A mathematical model for pattern formation in biological systems

[1]  F. Borek Book reviewCell lineage, stem cells and cell determination: edited by N. Le Douarin. Elsevier/North-Holland, Amsterdam, 1979 (378 pp., illus.) Dfl. 115.00 ($ 56.00) , 1980 .

[2]  A. Monroy,et al.  The pattern of cell division in the early development of the sea urchin. Paracentrotus lividus. , 1978, Developmental biology.

[3]  S A Kauffman,et al.  Control of sequential compartment formation in Drosophila. , 1978, Science.

[4]  G. Catalano 'Cleavage fields': hypothesis on early embryonic development. , 1977, Cell differentiation.

[5]  A Babloyantz,et al.  Models for cell differentiation and generation of polarity in diffusion-governed morphogenetic fields. , 1975, Bulletin of mathematical biology.

[6]  G. Nicolis,et al.  Bifurcation analysis of nonlinear reaction-diffusion equations—I. Evolution equations and the steady state solutions , 1975 .

[7]  A Goldbeter,et al.  Dissipative structures for an allosteric model. Application to glycolytic oscillations. , 1972, Biophysical journal.

[8]  A. R. Gourlay,et al.  General Hopscotch Algorithm for the Numerical Solution of Partial Differential Equations , 1971 .

[9]  A. R. Gourlay,et al.  Hopscotch: a Fast Second-order Partial Differential Equation Solver , 1970 .

[10]  L. Wolpert Positional information and the spatial pattern of cellular differentiation. , 1969, Journal of theoretical biology.

[11]  I. Prigogine,et al.  Symmetry Breaking Instabilities in Dissipative Systems. II , 1968 .

[12]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[13]  Paul Gordon,et al.  Nonsymmetric Difference Equations , 1965 .

[14]  J. Changeux,et al.  ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. , 1965, Journal of molecular biology.