Critical Review of Thermal Conductivity Models for Unsaturated Soils

Although it is well established that heat conduction in unsaturated soil depends on liquid saturation, there are several models available to consider the changes in thermal conductivity during drying and wetting. The key factors affecting thermal conductivity of unsaturated soil are evaluated through a critical examination of these different models and their development. Depending on the principles and assumptions employed, these models are categorized into three groups: mixing models involving series/parallel elements; empirical models where thermal conductivity values at dry and saturated states are used; and mathematical models based on phase volume fractions. Experimental data for different soils are used to assess the quality of prediction for these models. It is found that all the existing models do not realistically account for pore structure or interface properties, and thus are not capable of properly predicting thermal conductivity as a function of liquid saturation. A conceptual model based on soil–water retention mechanisms, is proposed to overcome the pitfalls of the existing models and can be used to establish quantitative thermal conductivity models for variably saturated soils in the future.

[1]  W. Woodside,et al.  Thermal Conductivity of Porous Media. I. Unconsolidated Sands , 1961 .

[2]  George R. Blake,et al.  Thermal Properties of Soils , 1950 .

[3]  James G. Berryman,et al.  Thermal conductivity of porous media , 2004 .

[4]  S. Shtrikman,et al.  A variational approach to the theory of the elastic behaviour of multiphase materials , 1963 .

[5]  B. O. Aduda,et al.  Effective thermal conductivity of loose particulate systems , 1996, Journal of Materials Science.

[6]  J. Mitchell,et al.  Factors Influencing Thermal Resistivity of Sands , 1989 .

[7]  Miles S. Kersten,et al.  Laboratory research for the determination of thermal properties of soils , 1949 .

[8]  J. Konrad,et al.  A generalized thermal conductivity model for soils and construction materials , 2005 .

[9]  J. Santamarina,et al.  Fundamental study of thermal conduction in dry soils , 2008 .

[10]  D. Esch Thermal Analysis, Construction, and Monitoring Methods for Frozen Ground , 2004 .

[11]  James K. Carson,et al.  Thermal conductivity bounds for isotropic, porous materials , 2005 .

[12]  Shan Chen,et al.  Thermal conductivity of sands , 2008 .

[13]  S. Shtrikman,et al.  A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials , 1962 .

[14]  G. Buchan,et al.  Inter‐particle contact heat transfer in soil systems at moderate temperatures , 2002 .

[15]  A. Karimi,et al.  Master‟s thesis , 2011 .

[16]  Robert Horton,et al.  An Improved Model for Predicting Soil Thermal Conductivity from Water Content at Room Temperature , 2007 .

[17]  Leroy S. Fletcher,et al.  Review of Models for Thermal Contact Conductance of Metals , 1997 .

[18]  Xin Sun,et al.  Comparison of Different Upscaling Methods for Predicting Thermal Conductivity of Complex Heterogeneous Materials System: Application on Nuclear Waste Forms , 2012, Metallurgical and Materials Transactions A.

[19]  W. Powrie,et al.  Ground energy systems: from analysis to geotechnical design , 2009 .

[20]  A. Papritz,et al.  A Fractal Approach to Model Soil Structure and to Calculate Thermal Conductivity of Soils , 2003 .

[21]  A. S. Mickley,et al.  The Thermal Conductivity of Moist Soil , 1951, Transactions of the American Institute of Electrical Engineers.

[22]  Joseph J. McCarthy,et al.  Heat conduction in granular materials , 2001 .

[23]  D. White Characteristics of geothermal resources , 1973 .

[24]  H. Brandl Energy foundations and other thermo-active ground structures , 2006 .

[25]  D. Singh,et al.  A generalized relationship to estimate thermal resistivity of soils , 1999 .

[26]  Richard McGaw HEAT CONDUCTION IN SATURATED GRANULAR MATERIALS , 1969 .

[27]  Tissa H. Illangasekare,et al.  Thermal Conductivity of Sands under Varying Moisture and Porosity in Drainage–Wetting Cycles , 2010 .

[28]  J. Webb Thermal Conductivity of Soil , 1956, Nature.

[29]  O. Johansen Thermal Conductivity of Soils , 1977 .

[30]  Tae Sup Yun,et al.  Thermal conductivity of hydrate‐bearing sediments , 2009 .

[31]  Mary Anne White,et al.  Thermal conductivity of crystalline particulate materials , 2000 .

[32]  Antonio Gens,et al.  A full-scale in situ heating test for high-level nuclear waste disposal: observations, analysis and interpretation , 2009 .

[33]  M. S. Kersten LABORATORY RESEARCH FOR THE DETERMINATION OF THE THERMAL PROPERTIES OF SOILS: FINAL REPORT. , 1949 .

[34]  V. R. Tarnawski,et al.  Assessing the impact of quartz content on the prediction of soil thermal conductivity , 2009 .

[35]  D. Singh,et al.  Generalized relationships for estimating soil thermal resistivity , 2000 .

[36]  Fabio Gori,et al.  Theoretical Prediction of the Soil Thermal Conductivity at Moderately High Temperatures , 2002 .

[37]  A. Bejan,et al.  Heat transfer handbook , 2003 .

[38]  James K. Mitchell,et al.  Fundamentals of soil behavior , 1976 .

[39]  Muhammad Sahimi,et al.  Transient Diffusion and Conduction in Heterogeneous Media: Beyond the Classical Effective-Medium Approximation , 1997 .

[40]  Leroy S. Fletcher,et al.  Thermal Contact Conductance of Spherical Rough Metals , 1997 .

[41]  R. Tye,et al.  thermal conductivity , 2019 .

[42]  W. R. V. Wijk,et al.  Physics of Plant Environment , 1964 .

[43]  T. Yun Mechanical and Thermal Study of Hydrate Bearing Sediments , 2005 .