Synthesis of near-infrared silver-indium-sulfide (AgInS2) quantum dots as heavy-metal free photosensitizer for solar cell applications

Abstract We report the use of silver-indium-sulfide (AgInS 2 ) quantum dots (QDs) as heavy metal-free photosensitizer for QDs-sensitized solar cell. For fabricating the TiO 2 /AgInS 2 electrode, the QDs were attached to a mesoporous TiO 2 surface by using bifunctional linker molecules. The fabricated TiO 2 /AgInS 2 electrode exhibits light absorption in the visible region and serves as the photoanode. Upon bandgap excitation, injection of photoexcited electrons from AgInS 2 QDs into the TiO 2 matrix produces photocurrents accordingly. The proof-of-concept AgInS 2 QDs-sensitized solar cell exhibits a short-circuit current of 0.49 mA/cm2 and open-circuit voltage of 0.24 V, under one sun illumination.

[1]  Jun-Ho Yum,et al.  CdSe Quantum Dot-Sensitized Solar Cells Exceeding Efficiency 1% at Full-Sun Intensity , 2008 .

[2]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[3]  Michael Grätzel,et al.  Solar energy conversion by dye-sensitized photovoltaic cells. , 2005, Inorganic chemistry.

[4]  B. Parkinson,et al.  Multiple Exciton Collection in a Sensitized Photovoltaic System , 2010, Science.

[5]  C. B. Carter,et al.  Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices. , 2007, Nano letters.

[6]  M. Grätzel Dye-sensitized solar cells , 2003 .

[7]  Seigo Ito,et al.  High molar extinction coefficient heteroleptic ruthenium complexes for thin film dye-sensitized solar cells. , 2006, Journal of the American Chemical Society.

[8]  Prashant V. Kamat,et al.  Photoelectrochemical behavior of thin CdSe and coupled TiO2/CdSe semiconductor films , 1993 .

[9]  Frank Nüesch,et al.  Co-sensitization of organic dyes for efficient ionic liquid electrolyte-based dye-sensitized solar cells. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[10]  Horst Weller,et al.  Sensitization of highly porous, polycrystalline TiO2 electrodes by quantum sized CdS , 1990 .

[11]  Nigel Pickett,et al.  Nanocrystalline semiconductors: Synthesis, properties, and perspectives , 2001 .

[12]  Anders Hagfeldt,et al.  Molecular engineering of organic sensitizers for dye-sensitized solar cell applications. , 2008, Journal of the American Chemical Society.

[13]  Michael Grätzel,et al.  Effect of a coadsorbent on the performance of dye-sensitized TiO2 solar cells: shielding versus band-edge movement. , 2005, The journal of physical chemistry. B.

[14]  P. Kamat,et al.  Quantum dot sensitized solar cells. A tale of two semiconductor nanocrystals: CdSe and CdTe. , 2009, ACS nano.

[15]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[16]  Arthur J. Nozik,et al.  Photosensitization of nanoporous TiO2 electrodes with InP quantum dots , 1998 .

[17]  Prashant V. Kamat,et al.  Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters , 2008 .

[18]  Y. Tachibana,et al.  CdS Quantum Dots Sensitized TiO2 Sandwich Type Photoelectrochemical Solar Cells , 2007 .

[19]  Ladislav Kavan,et al.  Highly efficient semiconducting TiO2 photoelectrodes prepared by aerosol pyrolysis , 1995 .

[20]  Guido Viscardi,et al.  Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. , 2005, Journal of the American Chemical Society.

[21]  Mohammad Khaja Nazeeruddin,et al.  Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes , 1993 .

[22]  A. Nozik Multiple exciton generation in semiconductor quantum dots , 2008 .

[23]  Horst Weller,et al.  Quantized Semiconductor Particles: A novel state of matter for materials science , 1993 .

[24]  Xiao Wei Sun,et al.  An oleic acid-capped CdSe quantum-dot sensitized solar cell , 2009 .

[25]  Kai Zhu,et al.  Nanocrystalline TiO2 solar cells sensitized with InAs quantum dots. , 2006, The journal of physical chemistry. B.

[26]  Chao-Ming Huang,et al.  Ternary Ag-In-S polycrystalline films deposited using chemical bath deposition for photoelectrochemical applications , 2010 .

[27]  Anders Hagfeldt,et al.  Light-Induced Redox Reactions in Nanocrystalline Systems , 1995 .

[28]  David F. Watson,et al.  Adsorption of CdSe nanoparticles to thiolated TiO2 surfaces: influence of intralayer disulfide formation on CdSe surface coverage. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[29]  David F. Watson,et al.  Influence of solvation and the structure of adsorbates on the kinetics and mechanism of dimerization-induced compositional changes of mixed monolayers on TiO(2). , 2009, Langmuir : the ACS journal of surfaces and colloids.

[30]  Jia-Hung Tsai,et al.  Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells. , 2009, ACS nano.

[31]  P. Liska,et al.  Engineering of efficient panchromatic sensitizers for nanocrystalline TiO(2)-based solar cells. , 2001, Journal of the American Chemical Society.

[32]  Horst Weller,et al.  Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide-Bandgap Semiconductors , 1994 .

[33]  Juan Bisquert,et al.  CdSe Quantum Dot-Sensitized TiO2 Electrodes: Effect of Quantum Dot Coverage and Mode of Attachment , 2009 .

[34]  S. Kuwabata,et al.  Preparation of Luminescent AgInS2−AgGaS2 Solid Solution Nanoparticles and Their Optical Properties , 2010 .

[35]  Xiaogang Peng,et al.  Formation of high-quality I-III-VI semiconductor nanocrystals by tuning relative reactivity of cationic precursors. , 2009, Journal of the American Chemical Society.

[36]  R. Schaller,et al.  Seven excitons at a cost of one: redefining the limits for conversion efficiency of photons into charge carriers. , 2006, Nano letters.

[37]  D. Riley,et al.  Photosensitization of nanocrystalline TiO2 by self-assembled layers of CdS quantum dots. , 2002, Chemical communications.

[38]  Anusorn Kongkanand,et al.  Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture. , 2008, Journal of the American Chemical Society.

[39]  Masaru Kuno,et al.  Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles. , 2007, Journal of the American Chemical Society.

[40]  Paras N. Prasad,et al.  Multiple exciton generation and electrical extraction from a PbSe quantum dot photoconductor , 2008 .

[41]  David F. Watson,et al.  Distance-Dependent Electron Transfer in Tethered Assemblies of CdS Quantum Dots and TiO2 Nanoparticles , 2009 .

[42]  Prashant V. Kamat,et al.  Photosensitization of TiO2 Nanostructures with CdS Quantum Dots: Particulate versus Tubular Support Architectures , 2009 .

[43]  Jae Kwan Lee,et al.  Molecular engineering of organic sensitizers for solar cell applications. , 2006, Journal of the American Chemical Society.

[44]  Vaidyanathan Subramanian,et al.  Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. , 2006, Journal of the American Chemical Society.

[45]  Qing Chen,et al.  CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. , 2008, Journal of the American Chemical Society.

[46]  H. Masuda,et al.  Efficient Electron Transfer Ruthenium Sensitizers for Dye-Sensitized Solar Cells , 2009 .

[47]  Yuh‐Lang Lee,et al.  Efficient polysulfide electrolyte for CdS quantum dot-sensitized solar cells , 2008 .

[48]  David F. Watson,et al.  Electron injection at dye-sensitized semiconductor electrodes. , 2005, Annual review of physical chemistry.

[49]  M. Beard,et al.  Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. , 2005, Nano letters.

[50]  Juan Bisquert,et al.  Factors determining the photovoltaic performance of a CdSe quantum dot sensitized solar cell: the role of the linker molecule and of the counter electrode , 2008, Nanotechnology.