Palette-Style Volume Visualization

In this paper we propose a palette-style volume visualization interface which aims at providing users with an intuitive volume exploration tool. Our system is inspired by the widely used wheel-style color palette. The system initially creates a set of direct volume rendered images (DVRIs) manually or automatically, and arranges them over a circle in 2D image space. Based on the initial set of DVRIs called primary DVRIs which imitate the primary colors in the color wheel, users can create more DVRIs on the wheel using PhotoShop-style image editing operations such as the fusing operation. With our system, non-expert users can easily navigate and explore volumetric data. In addition, users can always know where they have been, where they are, and where they could go in a visualization process and hence redundant exploration can be avoided.

[1]  T. J. Jankun-Kelly,et al.  MoireGraphs: radial focus+context visualization and interaction for graphs with visual nodes , 2003, IEEE Symposium on Information Visualization 2003 (IEEE Cat. No.03TH8714).

[2]  William J. Schroeder,et al.  The Visualization Toolkit , 2005, The Visualization Handbook.

[3]  Amitava Datta,et al.  A parallel coordinates style interface for exploratory volume visualization , 2005, IEEE Transactions on Visualization and Computer Graphics.

[4]  Melanie Mitchell,et al.  An introduction to genetic algorithms , 1996 .

[5]  Thomas Nocke,et al.  A History Mechanism for Visual Data Mining , 2004 .

[6]  Heidrun Schumann,et al.  A History Mechanism for Visual Data Mining , 2004, IEEE Symposium on Information Visualization.

[7]  G. Kindlmann,et al.  Semi-automatic generation of transfer functions for direct volume rendering , 1998, IEEE Symposium on Volume Visualization (Cat. No.989EX300).

[8]  Kwan-Liu Ma,et al.  An intelligent system approach to higher-dimensional classification of volume data , 2005, IEEE Transactions on Visualization and Computer Graphics.

[9]  Yingcai Wu,et al.  Interactive Transfer Function Design Based on Editing Direct Volume Rendered Images , 2007, IEEE Transactions on Visualization and Computer Graphics.

[10]  Kwan-Liu Ma Image Graps- A Novel Interface for Visual Data Exploration , 1999 .

[11]  Anna Vilanova,et al.  Visualization of boundaries in volumetric data sets using LH histograms , 2006, IEEE Transactions on Visualization and Computer Graphics.

[12]  Michael Gertz,et al.  A Model and Framework for Visualization Exploration , 2007, IEEE Transactions on Visualization and Computer Graphics.

[13]  Kwan-Liu Ma,et al.  Interactive multi-scale exploration for volume classification , 2006, The Visual Computer.

[14]  Eduard Gröller,et al.  Mastering Transfer Function Specification by using VolumePro Technology , 2000 .

[15]  William E. Lorensen,et al.  The Transfer Function Bake-Off , 2001, IEEE Computer Graphics and Applications.

[16]  Joe Michael Kniss,et al.  Multidimensional Transfer Functions for Interactive Volume Rendering , 2002, IEEE Trans. Vis. Comput. Graph..

[17]  Christof Rezk-Salama,et al.  High-Level User Interfaces for Transfer Function Design with Semantics , 2006, IEEE Transactions on Visualization and Computer Graphics.

[18]  G. Kindlmann Transfer Functions in Direct Volume Rendering : Design , Interface , Interaction , 2002 .

[19]  Jakob Nielsen,et al.  Heuristic evaluation of user interfaces , 1990, CHI '90.

[20]  H. D. Cheng,et al.  Contrast enhancement based on a novel homogeneity measurement , 2003, Pattern Recognit..

[21]  Paul A. Beardsley,et al.  Design galleries: a general approach to setting parameters for computer graphics and animation , 1997, SIGGRAPH.

[22]  T. J. Jankun-Kelly,et al.  Visualization Exploration and Encapsulation via a Spreadsheet-Like Interface , 2001, IEEE Trans. Vis. Comput. Graph..

[23]  Dorothea Heiss-Czedik,et al.  An Introduction to Genetic Algorithms. , 1997, Artificial Life.

[24]  Melanie Tory,et al.  Human factors in visualization research , 2004, IEEE Transactions on Visualization and Computer Graphics.