Assessing the effect of attribute uncertainty on the robustness of choropleth map classification

Choropleth maps are often used to visualize the spatial distribution of information collected for enumeration units. Such maps, however, are normally produced without considering the effect of uncertainty associated with data, which can contribute to incorrect interpretation. The purpose of this paper is to develop a method that can be used to evaluate the classification robustness of choropleth maps when the attribute uncertainty associated with the data is known or can be estimated. We first develop a measure to indicate the robustness of classification schemes. We then design a set of experiments to examine the robustness of different choropleth map classifications under various levels and types of uncertainty. Our experiments suggest that the robustness of a choropleth classification scheme is a function of uncertainty and the number of classes used. Increases in data uncertainty will decrease map robustness. However, it is possible to increase map robustness by choosing a smaller number of classes. We also discuss a visualization approach that can be used to display the classification robustness of each enumeration unit within a choropleth map.

[1]  George F. Jenks,et al.  ERROR ON CHOROPLETHIC MAPS: DEFINITION, MEASUREMENT, REDUCTION , 1971 .

[2]  A. Gelman,et al.  All maps of parameter estimates are misleading. , 1999, Statistics in medicine.

[3]  L. Waller,et al.  Applied Spatial Statistics for Public Health Data: Waller/Applied Spatial Statistics , 2004 .

[4]  Gerard B. M. Heuvelink,et al.  Propagation of errors in spatial modelling with GIS , 1989, Int. J. Geogr. Inf. Sci..

[5]  Linda C. van der Gaag,et al.  Visual exploration of uncertainty in remote-sensing classification , 1998 .

[6]  N. Cressie,et al.  Spatial Statistics in the Presence of Location Error with an Application to Remote Sensing of the Environment , 2003 .

[7]  M. Goodchild,et al.  Uncertainty in geographical information , 2002 .

[8]  Gennady L. Andrienko,et al.  Interactive maps for visual data exploration , 1999, Int. J. Geogr. Inf. Sci..

[9]  Alan M. MacEachren,et al.  Visualizing Georeferenced Data: Representing Reliability of Health Statistics , 1998 .

[10]  Cynthia A. Brewer,et al.  ColorBrewer in Print: A Catalog of Color Schemes for Maps , 2003 .

[11]  David A. Bennett,et al.  Using Genetic Algorithms to Create Multicriteria Class Intervals for Choropleth Maps , 2003 .

[12]  Jeffrey S. Torguson,et al.  Cartography: Thematic Map Design , 1990 .

[13]  E. Bruce MacDougall,et al.  Exploratory Analysis, Dynamic Statistical Visualization, and Geographic Information Systems , 1992 .

[14]  D. Saupe Algorithms for random fractals , 1988 .

[15]  Luis A. Escobar,et al.  Statistical Intervals: A Guide for Practitioners , 1991 .

[16]  Michael F. Goodchild,et al.  The accuracy of spatial databases , 1991 .

[17]  Marc P. Armstrong,et al.  ChoroWare: A Software Toolkit for Choropleth Map Classification , 2006 .

[18]  P. Diggle Applied Spatial Statistics for Public Health Data , 2005 .

[19]  Cowan Cd,et al.  1980 census of population and housing. Evaluation and research reports. The coverage of population in the 1980 census. , 1988 .

[20]  Models of uncertainty in spatial data , 2022 .

[21]  Michael F. Goodchild,et al.  A MODEL OF ERROR FOR CHOROPLETH MAPS, WITH APPLICATIONS TO GEOGRAPHIC INFORMATION SYSTEMS , 2008 .

[22]  Robert B Mc Master,et al.  Cartographic Symbolization and Visualization , 2002 .

[23]  Terry A. Slocum Thematic Cartography and Geographic Visualization , 2004 .

[24]  A. Schirm The effects of census undercount adjustment on congressional apportionment. , 1991, Journal of the American Statistical Association.

[25]  Elisabeth S. Nelson How Maps Work: Representation, Visualization, and Design , 1996 .

[26]  M. Kate Beard,et al.  NCGIA Research Initiative 7 Visualization of Spatial Data Quality: Scientific Report for the Specialist Meeting (91-26) , 1991 .

[27]  L. Waller,et al.  Applied Spatial Statistics for Public Health Data , 2004 .

[28]  Alan M. MacEachren,et al.  VISUALIZING UNCERTAIN INFORMATION , 1992 .

[29]  K. Kafadar,et al.  Smoothing geographical data, particularly rates of disease. , 1996, Statistics in medicine.

[30]  M. Woodbury,et al.  Empirical Bayes procedures for stabilizing maps of U.S. cancer mortality rates. , 1989, Journal of the American Statistical Association.

[31]  J. Wakefield,et al.  Spatial epidemiology: methods and applications. , 2000 .

[32]  Harri T. Kiiveri,et al.  Assessing, Representing and Transmitting Positional Uncertainty in Maps , 1997, Int. J. Geogr. Inf. Sci..

[33]  B. Buttenfield Representing Data Quality , 1993 .

[34]  Great Britain. Foreign Office. Census of population , 1988 .

[35]  N. Cressie Empirical Bayes estimation of undercount in the decennial census. , 1989, Journal of the American Statistical Association.

[36]  Roger Bivand,et al.  Implementing Spatial Data Analysis Software Tools in R , 2006 .

[37]  Mario A. Gomarasca,et al.  Elements of Cartography , 2009 .

[38]  Constance F. Citro,et al.  The 2000 census, counting under adversity , 2004 .

[39]  Arko Lucieer,et al.  Interactive and visual fuzzy classification of remotely sensed imagery for exploration of uncertainty , 2004, Int. J. Geogr. Inf. Sci..