Fabrication of micro- and nano-structured materials using mask-less processes

Micro- and nano-scale devices are used in electronics, micro-electro- mechanical, bio-analytical and medical components. An essential step for the fabrication of such small scale devices is photolithography. Photolithography requires a master mask to transfer micrometre or sub-micrometre scale patterns onto a substrate. The requirement of a physical, rigid mask can impede progress in applications which require rapid prototyping, flexible substrates, multiple alignment and 3D fabrication. Alternative technologies, which do not require the use of a physical mask, are suitable for these applications. In this paper mask-less methods of micro- and nano-scale fabrication have been discussed. The most common technique, which is the laser direct imaging (LDI), technique has been applied to fabricate micrometre scale structures on printed circuit boards, glass and epoxy. LDI can be combined with chemical methods to deposit metals, inorganic materials as well as some organic entities at the micrometre scale. Inkjet technology can be used to fabricate micrometre patterns of etch resists, organic transistors as well as arrays for bioanalysis. Electrohydrodynamic atomisation is used to fabricate micrometre scale ceramic features. Electrochemical methodologies offer a variety of technical solutions for micro- and nano-fabrication owing to the fact that electron charge transfer can be constrained to a solid–liquid interface. Electrochemical printing is an adaptation of inkjet printing which can be used for rapid prototyping of metallic circuits. Micro-machining using nano-second voltage pulses have been used to fabricate high precision features on metals and semiconductors. Optimisation of reactor, electrochemistry and fluid flow (EnFACE) has also been employed to transfer micrometre scale patterns on a copper substrate. Nano-scale features have been fabricated by using specialised tools such as scanning tunnelling microscopy, atomic force microscopy and focused ion beam. The methodologies adopted for nano-fabrication have analogies with the micrometre scale patterning methods. Currently, the resolution of mask-less techniques is lower than that of lithographic methods using a physical mask. However, in future, hybridisation or combination of the mask-less methods could lead to high resolution and higher precision micro- and nano-scale patterning methods.

[1]  F. Kärtner,et al.  Localized electrochemical nucleation and growth of low-dimensional metal structures , 2002 .

[2]  D. Schwartz,et al.  Electrochemical printing: mass transfer effects , 2007 .

[3]  Costas P. Grigoropoulos,et al.  Fabrication of multilayer passive and active electric components on polymer using inkjet printing and low temperature laser processing , 2007 .

[4]  Tuan Vo-Dinh,et al.  Microarray sampling-platform fabrication using bubble-jet technology for a biochip system , 2001, Fresenius' journal of analytical chemistry.

[5]  Harun H. Solak,et al.  Nanolithography with coherent extreme ultraviolet light , 2006 .

[6]  M. Yoshimura,et al.  Direct fabrication of patterned PbS and CdS on organic sheets at ambient temperature by on-site reaction using inkjet printer , 2002 .

[7]  Klavs F. Jensen,et al.  Microchemical systems: Status, challenges, and opportunities , 1999 .

[8]  P. Calvert Inkjet Printing for Materials and Devices , 2001 .

[9]  Jung Ah Lim,et al.  Precise control of surface wettability of mixed monolayers using a simple wiping method , 2006 .

[10]  T. Will,et al.  Nanofabrication of Small Copper Clusters on Gold(111) Electrodes by a Scanning Tunneling Microscope , 1997, Science.

[11]  C. Chen,et al.  CO2 laser direct writing of silver lines on epoxy resin from solid film , 2005 .

[12]  Yan Zhao,et al.  Laser-induced site-selective silver seeding on polyimide for electroless copper plating , 2006 .

[13]  Brian N. Johnson,et al.  An integrated nanoliter DNA analysis device. , 1998, Science.

[14]  Xiaoyan Zeng,et al.  Laser direct fabrication of silver conductors on glass boards , 2005 .

[15]  Mingjun Zhang,et al.  Bio-Microarray Fabrication Techniques—A Review , 2006, Critical reviews in biotechnology.

[16]  Matthias Kock,et al.  Electrochemical micromachining with ultrashort voltage pulses–a versatile method with lithographical precision , 2003 .

[17]  T. Boland,et al.  Inkjet printing for high-throughput cell patterning. , 2004, Biomaterials.

[18]  M. Datta,et al.  Microfabrication by electrochemical metal removal , 1998, IBM J. Res. Dev..

[19]  M. L. Hair,et al.  Design criteria and future directions in ink-jet ink technology , 1989 .

[20]  M. H. Gelchinski,et al.  Laser‐enhanced jet plating: A method of high‐speed maskless patterning , 1983 .

[21]  Chad A Mirkin,et al.  Massively parallel dip-pen nanolithography with 55 000-pen two-dimensional arrays. , 2006, Angewandte Chemie.

[22]  Lee Mein Wee,et al.  Multiple-layer laser direct writing metal deposition in electrolyte solution , 2005 .

[23]  S. Roy,et al.  Electrodeposition of Gold from a Thiosulfate-Sulfite Bath for Microelectronic Applications , 2003 .

[24]  R. Alkire,et al.  High‐Speed Selective Electroplating with Single Circular Jets , 1982 .

[25]  M. Madou Fundamentals of microfabrication , 1997 .

[26]  Meng-Hua Yen,et al.  Crack-free direct-writing on glass using a low-power UV laser in the manufacture of a microfluidic chip , 2005 .

[27]  F. Tiberg,et al.  Capillary rise of surfactant solutions , 2000 .

[28]  R. Dorey,et al.  Thick PZT Micro-Features Obtained by Direct Patterning of Photosensitive Precursor Solution , 2003 .

[29]  Paul Watts,et al.  The application of micro reactors to synthetic chemistry , 2001 .

[30]  Sawyer B. Fuller,et al.  Ink-jet printed nanoparticle microelectromechanical systems , 2002 .

[31]  D. Landolt,et al.  Time-dependent morphology and adhesion of osteoblastic cells on titanium model surfaces featuring scale-resolved topography. , 2004, Biomaterials.

[32]  U. Schubert,et al.  Inkjet printing of well-defined polymer dots and arrays. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[33]  Patrick J. Smith,et al.  Direct ink-jet printing and low temperature conversion of conductive silver patterns , 2006 .

[34]  Madhav Datta,et al.  Jet and Laser‐Jet Electrochemical Micromachining of Nickel and Steel , 1989 .

[35]  Hitoshi Azuma,et al.  Droplet Behaviors on Substrates in Thin-Film Formation Using Ink-Jet Printing , 2004 .

[37]  D. Schwartz,et al.  Electrochemical printing: in situ characterization using an electrochemical quartz crystal microbalance , 2005 .

[38]  Hiroshi Yokoyama,et al.  Super-fine ink-jet printing: toward the minimal manufacturing system , 2005 .

[39]  R. E. Acosta,et al.  Investigation of Laser‐Enhanced Electroplating Mechanisms , 1981 .

[40]  D. Lewis,et al.  Ink-jet fabrication of electronic components , 2007 .

[41]  E. Leiva,et al.  Computer simulation of electrochemical nanostructuring induced by supersaturation conditions , 2007 .

[42]  Koji Sugioka,et al.  Selective metallization of internal walls of hollow structures inside glass using femtosecond laser , 2005 .

[43]  Wallace W. Carr,et al.  Visualization of drop-on-demand inkjet: Drop formation and deposition , 2006 .

[44]  Robert Lee Melcher,et al.  Laser enhanced electroplating and maskless pattern generation , 1979 .

[45]  N. Pesika,et al.  Fabrication of Complex Architectures Using Electrodeposition into Patterned Self-Assembled Monolayers , 2006 .

[46]  M. Döbeli,et al.  Selective Electrodeposition of Cu Nanostructures on Focused Ion Beam Sensitized p-Si , 2002 .

[47]  Robert A. Dorey,et al.  Preparation of lead zirconate titanate nano-powder by electrohydrodynamic atomization , 2005 .

[48]  Luis M. Liz-Marzán,et al.  Printing gold nanoparticles with an electrohydrodynamic direct-write device , 2006 .

[49]  Philip N. Bartlett,et al.  Mesoporous Platinum Films from Lyotropic Liquid Crystalline Phases , 1997 .

[50]  D. Schwartz,et al.  Electrochemical printing: software reconfigurable electrochemical microfabrication , 2005 .

[51]  M. Colina,et al.  DNA deposition through laser induced forward transfer. , 2005, Biosensors & bioelectronics.

[52]  Lubomyr T. Romankiw,et al.  Laser-enhanced plating and etching: mechanisms and applications , 1982 .

[53]  Mehmet Sarikaya,et al.  Electrochemical nanofabrication using crystalline protein masks. , 2005, Nano letters.

[54]  Luke P. Lee,et al.  Direct Laser Writing on Electrolessly Deposited Thin Metal Films for Applications in Micro- and Nanofluidics , 2004 .

[55]  Xin Zhang,et al.  Fabrication of three-dimensional microstructures based on singled-layered SU-8 for lab-on-chip applications , 2006 .

[56]  Thomas Sutter An overview of digital printing for advanced interconnect applications , 2005 .

[57]  Mohan Edirisinghe,et al.  Electrostatic atomisation of a ceramic suspension , 2004 .

[58]  Sudipta Roy,et al.  Microscale pattern transfer without photolithography of substrates , 2005 .

[59]  Michael J Sailor,et al.  Biomolecular screening with encoded porous-silicon photonic crystals , 2002, Nature Materials.

[60]  M. Epple,et al.  Preparation of two-dimensionally patterned layers of functionalised calcium phosphate nanoparticles by laser direct writing , 2006 .

[61]  Martin Hegner,et al.  Rapid functionalization of cantilever array sensors by inkjet printing , 2004 .

[62]  Gyeong S. Hwang,et al.  Two-dimensional computational model for electrochemical micromachining with ultrashort voltage pulses , 2004 .

[63]  W. J. Lorenz,et al.  Nanoelectrochemistry and nanophysics at electrochemical interfaces , 2005 .

[64]  D. Chin,et al.  Mass Transfer to an Impinging Jet Electrode , 1978 .

[65]  Benjamin W. Maynor,et al.  Au “Ink” for AFM “Dip-Pen” Nanolithography , 2001 .

[66]  Anodic film studies on nickel under high rate transpassive dissolution conditions , 1979 .

[68]  Shuqing Sun,et al.  Photopatterning of self-assembled monolayers at 244 nm and applications to the fabrication of functional microstructures and nanostructures , 2005 .

[69]  S. Roy,et al.  Flow cell design for metal deposition at recessed circular electrodes and wafers , 2001 .

[70]  G. Hwang,et al.  Etch Trends in Electrochemical Machining with Ultrashort Voltage Pulses , 2006 .

[71]  New Advances in Forming Functional Ceramics for Micro Devices , 2006 .

[72]  Qinghai Wu,et al.  Development of chemical sensors using microfabrication and micromachining techniques , 1993 .

[73]  C. Knabe,et al.  Anodic cell-protein deposition on inverse inkjet printed micro structured gold surfaces. , 2007, Biosensors & bioelectronics.

[74]  O. Azzaroni,et al.  Electrochemical deposition onto self-assembled monolayers: new insights into micro- and nanofabrication. , 2005, Chemistry.

[75]  S. Franssila Introduction to microfabrication , 2004 .

[76]  Allen J. Bard,et al.  Scanning Electrochemical Microscopy High‐Resolution Deposition and Etching of Metals , 1989 .

[77]  Martin Hegner,et al.  Inkjet deposition of alkanethiolate monolayers and DNA oligonucleotides on gold: evaluation of spot uniformity by wet etching. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[78]  D. Landolt,et al.  High Rate Anodic Dissolution of Copper , 1969 .

[79]  R. Schuster Electrochemical microstructuring with short voltage pulses. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[80]  Koji Sugioka,et al.  Microfabrication of 3D hollow structures embedded in glass by femtosecond laser for Lab-on-a-chip applications , 2005 .

[81]  H. Sirringhaus,et al.  High-Resolution Ink-Jet Printing of All-Polymer Transistor Circuits , 2000, Science.

[82]  P. Schmuki,et al.  AFM SCRATCHING AND METAL DEPOSITION THROUGH INSULATING LAYERS ON SILICON , 2005 .

[83]  John G.V. Scott Digital printing for printed circuit boards , 2005 .

[84]  DPN-generated nanostructures as positive resists for preparing lithographic masters or hole arrays. , 2006, Nano letters.

[85]  M. Yen,et al.  Rapid cell-patterning and microfluidic chip fabrication by crack-free CO2 laser ablation on glass , 2006 .

[86]  Satoshi Kawata,et al.  Two-photon polymerization of metal ions doped acrylate monomers and oligomers for three-dimensional structure fabrication , 2004 .

[87]  S. Evans,et al.  Fabrication of gold micro- and nanostructures by photolithographic exposure of thiol-stabilized gold nanoparticles. , 2006, Nano letters (Print).