Parameter drift instability in disturbance-free adaptive systems

Adaptive identification and control algorithms can exhibit local instability when certain ideal assumptions, such as satisfaction of strictly positive real (SPR) conditions, are violated. However, conjectures suggest that due to a self-stabilization mechanism, global boundedness may still hold despite local instabilities. Counterexamples to these are presented, showing that self-stabilization is bypassed via hidden unbounded parameter drift. Although parameter drift instability is known to occur in adaptive systems with disturbances, concrete examples are given to show that unbounded drift can also occur in the disturbance-free case when SPR conditions are violated. >

[1]  William A. Sethares,et al.  Output error identification is not globally stable in the 'nonideal' case , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[2]  D. Mayne,et al.  Design issues in adaptive control , 1988 .

[3]  Petar V. Kokotovic,et al.  Instability analysis and improvement of robustness of adaptive control , 1984, Autom..

[4]  Michael Athans,et al.  Analytical verification of undesirable properties of direct model reference adaptive control algorithms , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[5]  Iven M. Y. Mareels,et al.  Non-linear dynamics in adaptive control: Chaotic and periodic stabilization , 1986, Autom..

[6]  Ioan Doré Landau,et al.  Unification of discrete time explicit model reference adaptive control designs , 1981, Autom..

[7]  D. Lawrence,et al.  Recursive parameter identification algorithm stability analysis via pi-sharing , 1986 .

[8]  Brian D. O. Anderson,et al.  Adaptive systems, lack of persistency of excitation and bursting phenomena , 1985, Autom..

[9]  P. Kokotovic,et al.  Boundedness conjecture for an output error adaptive algorithm , 1990 .

[10]  B. Anderson,et al.  On reduced-order adaptive output error identification and adaptive IIR filtering , 1982 .

[11]  M. Jaidane-Saidane,et al.  Adaptive IIR filtering and chaotic dynamics: application to audiofrequency coding , 1989 .

[12]  R. Bitmead,et al.  Nonlinear Dynamics in Adaptive Control: Chaotic and Periodic Stabilization , 1987 .

[13]  William A. Sethares,et al.  Dynamics of an adaptive hybrid , 1991 .

[14]  William Sethares,et al.  Parameter drift in equation error identification , 1985, 1985 24th IEEE Conference on Decision and Control.

[15]  C. Richard Johnson,et al.  Bursting in adaptive hybrids , 1989, IEEE Trans. Commun..

[16]  Robert R. Bitmead,et al.  The dynamics of bursting in simple adaptive feedback systems with leakage , 1991 .

[17]  P.V. Kokotovic,et al.  On a boundedness conjecture for output error adaptive algorithms , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[18]  C. Richard Johnson,et al.  Parameter drift in LMS adaptive filters , 1986, IEEE Trans. Acoust. Speech Signal Process..

[19]  O. Macchi,et al.  Quasi‐periodic self‐stabilization of adaptive ARMA predictors , 1988 .

[20]  Masayoshi Tomizuka Parallel MRAS without compensation block , 1982 .