Data-driven approximation of the Koopman generator: Model reduction, system identification, and control

We derive a data-driven method for the approximation of the Koopman generator called gEDMD, which can be regarded as a straightforward extension of EDMD (extended dynamic mode decomposition). This approach is applicable to deterministic and stochastic dynamical systems. It can be used for computing eigenvalues, eigenfunctions, and modes of the generator and for system identification. In addition to learning the governing equations of deterministic systems, which then reduces to SINDy (sparse identification of nonlinear dynamics), it is possible to identify the drift and diffusion terms of stochastic differential equations from data. Moreover, we apply gEDMD to derive coarse-grained models of high-dimensional systems, and also to determine efficient model predictive control strategies. We highlight relationships with other methods and demonstrate the efficacy of the proposed methods using several guiding examples and prototypical molecular dynamics problems.

[1]  J. Rogers Chaos , 1876 .

[2]  Stefan Klus,et al.  Feedback Control of Nonlinear PDEs Using Data-Efficient Reduced Order Models Based on the Koopman Operator , 2018, 1806.09898.

[3]  Frank Noé,et al.  Markov models of molecular kinetics: generation and validation. , 2011, The Journal of chemical physics.

[4]  R. L. Stratonovich A New Representation for Stochastic Integrals and Equations , 1966 .

[5]  Steven L. Brunton,et al.  Dynamic mode decomposition - data-driven modeling of complex systems , 2016 .

[6]  Jialin Hong,et al.  Projection methods for stochastic differential equations with conserved quantities , 2016, 1601.04157.

[7]  L. Grüne,et al.  Nonlinear Model Predictive Control : Theory and Algorithms. 2nd Edition , 2011 .

[8]  Igor Mezic,et al.  Koopman Operator Spectrum for Random Dynamical Systems , 2017, Journal of Nonlinear Science.

[9]  Blane Jackson Hollingsworth,et al.  Stochastic Differential Equations: A Dynamical Systems Approach , 2009 .

[10]  M. Ledoux,et al.  Analysis and Geometry of Markov Diffusion Operators , 2013 .

[11]  Feliks Nüske,et al.  Coarse-graining molecular systems by spectral matching. , 2019, The Journal of chemical physics.

[12]  Igor Mezic,et al.  Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control , 2016, Autom..

[13]  H. Bock,et al.  Efficient direct multiple shooting for nonlinear model predictive control on long horizons , 2012 .

[14]  Feliks Nüske,et al.  Spectral Properties of Effective Dynamics from Conditional Expectations , 2019, Entropy.

[15]  Jake P. Taylor-King,et al.  Operator Fitting for Parameter Estimation of Stochastic Differential Equations , 2017, 1709.05153.

[16]  Igor Mezic,et al.  On Convergence of Extended Dynamic Mode Decomposition to the Koopman Operator , 2017, J. Nonlinear Sci..

[17]  Frank Noé,et al.  Machine Learning of Coarse-Grained Molecular Dynamics Force Fields , 2018, ACS central science.

[18]  Stefan Klus,et al.  Koopman operator-based model reduction for switched-system control of PDEs , 2017, Autom..

[19]  Erwan Faou,et al.  Conservative stochastic differential equations: Mathematical and numerical analysis , 2009, Math. Comput..

[20]  Steven L. Brunton,et al.  Deep learning for universal linear embeddings of nonlinear dynamics , 2017, Nature Communications.

[21]  Matthew O. Williams,et al.  A kernel-based method for data-driven koopman spectral analysis , 2016 .

[22]  HERMITE POLYNOMIALS THROUGH LINEAR ALGEBRA , 2017 .

[23]  Gregory A Voth,et al.  A multiscale coarse-graining method for biomolecular systems. , 2005, The journal of physical chemistry. B.

[24]  Steven L. Brunton,et al.  Discovering Conservation Laws from Data for Control , 2018, 2018 IEEE Conference on Decision and Control (CDC).

[25]  Feliks Nüske,et al.  Sparse learning of stochastic dynamical equations. , 2017, The Journal of chemical physics.

[26]  Moritz Diehl,et al.  The integer approximation error in mixed-integer optimal control , 2012, Math. Program..

[27]  G. Ciccotti,et al.  Projection of diffusions on submanifolds: Application to mean force computation , 2008 .

[28]  Steven L. Brunton,et al.  Dynamic Mode Decomposition with Control , 2014, SIAM J. Appl. Dyn. Syst..

[29]  Stefan Klus,et al.  On the numerical approximation of the Perron-Frobenius and Koopman operator , 2015, 1512.05997.

[30]  G. Pavliotis Stochastic Processes and Applications: Diffusion Processes, the Fokker-Planck and Langevin Equations , 2014 .

[31]  Philipp Metzner Transition Path Theory for Markov Processes , 2008 .

[32]  T. Lelièvre,et al.  Effective dynamics using conditional expectations , 2009, 0906.4865.

[33]  Frank Noé,et al.  Variational Approach to Molecular Kinetics. , 2014, Journal of chemical theory and computation.

[34]  Hao Wu,et al.  Data-Driven Model Reduction and Transfer Operator Approximation , 2017, J. Nonlinear Sci..

[35]  Jorge Goncalves,et al.  Koopman-Based Lifting Techniques for Nonlinear Systems Identification , 2017, IEEE Transactions on Automatic Control.

[36]  B. O. Koopman,et al.  Hamiltonian Systems and Transformation in Hilbert Space. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Steven L. Brunton,et al.  On dynamic mode decomposition: Theory and applications , 2013, 1312.0041.

[38]  S. Brunton,et al.  Discovering governing equations from data by sparse identification of nonlinear dynamical systems , 2015, Proceedings of the National Academy of Sciences.

[39]  C. Schütte,et al.  Effective dynamics along given reaction coordinates, and reaction rate theory. , 2016, Faraday discussions.

[40]  Steven L. Brunton,et al.  Data-driven discovery of Koopman eigenfunctions for control , 2017, Mach. Learn. Sci. Technol..

[41]  Y. Wardi,et al.  Optimal control of switching times in switched dynamical systems , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[42]  Sina Ober-Blöbaum,et al.  Second-Order Switching Time Optimization for Switched Dynamical Systems , 2016, IEEE Transactions on Automatic Control.

[43]  I. Mezić,et al.  Applied Koopmanism. , 2012, Chaos.

[44]  Stefan Klus,et al.  Multidimensional Approximation of Nonlinear Dynamical Systems , 2018, Journal of Computational and Nonlinear Dynamics.

[45]  Alexandre Mauroy,et al.  Linear identification of nonlinear systems: A lifting technique based on the Koopman operator , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).

[46]  Amit Surana,et al.  Multilinear Time Invariant System Theory , 2019, 2019 Proceedings of the Conference on Control and its Applications.

[47]  P. Schmid,et al.  Dynamic mode decomposition of numerical and experimental data , 2008, Journal of Fluid Mechanics.

[48]  Ioannis G Kevrekidis,et al.  Extended dynamic mode decomposition with dictionary learning: A data-driven adaptive spectral decomposition of the Koopman operator. , 2017, Chaos.

[49]  Stefan Klus,et al.  Tensor-based dynamic mode decomposition , 2016, Nonlinearity.

[50]  Christof Schütte,et al.  Metastability and Markov State Models in Molecular Dynamics Modeling, Analysis , 2016 .

[51]  Steven L. Brunton,et al.  Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control , 2015, PloS one.

[52]  Gregory A. Voth,et al.  The Multiscale Coarse‐Graining Method , 2012 .

[53]  Stefan Klus,et al.  Eigendecompositions of Transfer Operators in Reproducing Kernel Hilbert Spaces , 2017, J. Nonlinear Sci..

[54]  Gary Froyland,et al.  Estimating Long-Term Behavior of Flows without Trajectory Integration: The Infinitesimal Generator Approach , 2011, SIAM J. Numer. Anal..

[55]  A. Mesbah,et al.  Stochastic Model Predictive Control: An Overview and Perspectives for Future Research , 2016, IEEE Control Systems.

[56]  Clarence W. Rowley,et al.  A Data–Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition , 2014, Journal of Nonlinear Science.

[57]  Vijay S. Pande,et al.  Modeling Molecular Kinetics with tICA and the Kernel Trick , 2015, Journal of chemical theory and computation.

[58]  Christof Schütte,et al.  A critical appraisal of Markov state models , 2015 .

[59]  Hao Wu,et al.  VAMPnets for deep learning of molecular kinetics , 2017, Nature Communications.

[60]  J. Rosenthal,et al.  Rates of convergence for everywhere-positive Markov chains , 1995 .

[61]  Alberto Bemporad,et al.  Robust model predictive control: A survey , 1998, Robustness in Identification and Control.

[62]  Gregory A. Voth,et al.  The multiscale coarse-graining method. I. A rigorous bridge between atomistic and coarse-grained models. , 2008, The Journal of chemical physics.