Numerical treatment of a class of systems of Fredholm integral equations on the real line
暂无分享,去创建一个
[1] B. Silbermann,et al. Numerical Analysis for Integral and Related Operator Equations , 1991 .
[2] Giovanni Monegato,et al. Truncated Quadrature Rules Over (0, INFINITY) and Nyström-Type Methods , 2003, SIAM J. Numer. Anal..
[3] Doron S. Lubinsky,et al. Orthogonal Polynomials for Exponential Weights , 2001 .
[4] Giovanni Monegato,et al. Truncated Gauss-Laguerre quadrature rules , 2000 .
[5] József Szabados,et al. Direct and Converse Polynomial Approximation Theorems on the Real Line with Weights Having Zeros , 2006 .
[6] Aleksandar S. Cvetković,et al. THE MATHEMATICA PACKAGE \OrthogonalPolynomials" ⁄ , 2004 .
[7] K. Atkinson. The Numerical Solution of Integral Equations of the Second Kind , 1997 .
[8] Giuseppe Mastroianni,et al. A Lagrange-type projector on the real line , 2010, Math. Comput..
[9] József Szabados,et al. Polynomial approximation on infinite intervals with weights having inner zeros , 2002 .
[10] Giuseppe Mastroianni,et al. Gaussian rules on unbounded intervals , 2003, J. Complex..
[11] Giuseppe Mastroianni,et al. A Nyström method for Fredholm integral equations on the real line , 2011 .