Stereospecific Electrophilic Fluorination of Alkylcarbastannatrane Reagents.

We report the use of isolable primary and secondary alkylcarbastannatrane nucleophiles in site-specific fluorination reactions. These reactions occur without the need for transition metal catalysis or in situ activation of the nucleophile. In the absence of the carbastannatrane backbone, alkyltin nucleophiles exhibit no activity towards fluorination. When enantioenriched alkylcarbastannatranes are employed, fluorination occurs predominately via a stereoinvertive mechanism to generate highly enantioenriched alkyl fluoride compounds. These conditions can also be extended to stereospecific chlorination, bromination, and iodination reactions.

[1]  V. Aggarwal,et al.  Stereospecific functionalizations and transformations of secondary and tertiary boronic esters. , 2017, Chemical communications.

[2]  Chao-yuan Wang,et al.  Stereospecific Palladium-Catalyzed Acylation of Enantioenriched Alkylcarbastannatranes: A General Alternative to Asymmetric Enolate Reactions. , 2017, Angewandte Chemie.

[3]  E. Fillion,et al.  B(C6F5)3-Catalyzed transfer 1,4-hydrostannylation of α,β-unsaturated carbonyls using iPr-tricarbastannatrane. , 2016, Chemical communications.

[4]  W. S. Hopkins,et al.  Changes in Tricarbastannatrane Transannular N-Sn Bonding upon Complexation Reveal Lewis Base Donicities. , 2016, Inorganic chemistry.

[5]  M. Glaser,et al.  Organomediated Enantioselective (18)F Fluorination for PET Applications. , 2015, Angewandte Chemie.

[6]  Alan H. Cherney,et al.  Enantioselective and Enantiospecific Transition-Metal-Catalyzed Cross-Coupling Reactions of Organometallic Reagents To Construct C–C Bonds , 2015, Chemical reviews.

[7]  V. Aggarwal,et al.  Synthesis of Enantioenriched Alkylfluorides by the Fluorination of Boronate Complexes. , 2015, Journal of the American Chemical Society.

[8]  A. Doyle,et al.  PyFluor: A Low-Cost, Stable, and Selective Deoxyfluorination Reagent. , 2015, Journal of the American Chemical Society.

[9]  V. Kaur,et al.  Carbastannatranes: a powerful coupling mediators in Stille coupling , 2015 .

[10]  Chao-yuan Wang,et al.  Configurationally stable, enantioenriched organometallic nucleophiles in stereospecific Pd-catalyzed cross-coupling reactions: an alternative approach to asymmetric synthesis , 2015, Chemical science.

[11]  H. Mayr,et al.  Structure and reactivity of boron-ate complexes derived from primary and secondary boronic esters. , 2015, Organic letters.

[12]  E. Fillion,et al.  Synthesis and characterization of tricarbastannatranes and their reactivity in B(C6F5)3-promoted conjugate additions. , 2015, Angewandte Chemie.

[13]  P. Champagne,et al.  Monofluorination of Organic Compounds: 10 Years of Innovation. , 2015, Chemical reviews.

[14]  Xiaojian Jiang,et al.  Enantioselective Suzuki cross-couplings of unactivated 1-fluoro-1-haloalkanes: synthesis of chiral β-, γ-, δ-, and ε-fluoroalkanes. , 2015, Journal of the American Chemical Society.

[15]  T. Ritter,et al.  PhenoFluorMix: practical chemoselective deoxyfluorination of phenols. , 2015, Organic letters.

[16]  V. Aggarwal,et al.  Stereospecific couplings of secondary and tertiary boronic esters. , 2015, Angewandte Chemie.

[17]  V. Aggarwal,et al.  Stereospezifische Kupplungen von sekundären und tertiären Boronsäureestern , 2015 .

[18]  Zhentao Wang,et al.  Silver-catalyzed radical fluorination of alkylboronates in aqueous solution. , 2014, Journal of the American Chemical Society.

[19]  Ling Li,et al.  Stereospecific Pd-Catalyzed Cross-Coupling Reactions of Secondary Alkylboron Nucleophiles and Aryl Chlorides , 2014, Journal of the American Chemical Society.

[20]  V. Aggarwal,et al.  Asymmetric Addition of Chiral Boronate Complexes to Cyclic Iminium Ions. , 2014 .

[21]  S. Sakthivel,et al.  Efficient synthesis of secondary alkyl fluorides via Suzuki cross-coupling reaction of 1-halo-1-fluoroalkanes. , 2014, Journal of the American Chemical Society.

[22]  Tobias Ritter,et al.  Einführung von Fluor und fluorhaltigen funktionellen Gruppen , 2013 .

[23]  T. Ritter,et al.  Introduction of fluorine and fluorine-containing functional groups. , 2013, Angewandte Chemie.

[24]  E. R. Jarvo,et al.  Asymmetric transition metal-catalyzed cross-coupling reactions for the construction of tertiary stereocenters. , 2013, Tetrahedron.

[25]  Rongcai Huang,et al.  Stereoretentive Pd-catalysed Stille cross-coupling reactions of secondary alkyl azastannatranes and aryl halides , 2013, Nature Chemistry.

[26]  E. Vedejs,et al.  Stille coupling of an aziridinyl stannatrane. , 2013, The Journal of organic chemistry.

[27]  T. Ritter,et al.  Late-stage deoxyfluorination of alcohols with PhenoFluor. , 2013, Journal of the American Chemical Society.

[28]  V. Aggarwal,et al.  Ate complexes of secondary boronic esters as chiral organometallic-type nucleophiles for asymmetric synthesis. , 2011, Journal of the American Chemical Society.

[29]  T. Ritter,et al.  Deoxyfluorination of phenols. , 2011, Journal of the American Chemical Society.

[30]  O. Solin,et al.  Radiosynthesis and evaluation of [18F]Selectfluor bis(triflate). , 2010, Angewandte Chemie.

[31]  T. Ritter,et al.  Silver-catalyzed late-stage fluorination. , 2010, Journal of the American Chemical Society.

[32]  T. Ritter,et al.  Silver-mediated fluorination of functionalized aryl stannanes. , 2009, Journal of the American Chemical Society.

[33]  Pius August Schubiger,et al.  Molecular imaging with PET. , 2008, Chemical reviews.

[34]  F. Diederich,et al.  Fluorine in Pharmaceuticals: Looking Beyond Intuition , 2007, Science.

[35]  N. Taylor,et al.  Cine-substitution in the Stille coupling: evidence for the carbenoid reactivity of sp3-gem-organodimetallic iodopalladio-trialkylstannylalkane intermediates. , 2003, Journal of the American Chemical Society.

[36]  L. Hegedus,et al.  Effect of adjacent chiral tertiary and quaternary centers on the metal-catalyzed allylic substitution reaction. , 2002, The Journal of organic chemistry.

[37]  P. Reider,et al.  Synthesis of an anti-methicillin-resistant Staphylococcus aureus (MRSA) carbapenem via stannatrane-mediated Stille coupling. , 2000, Organic letters.

[38]  W. O. Moss,et al.  Internal coordination at tin promotes selective alkyl transfer in the Stille coupling reaction , 1992 .

[39]  J. Fukuto,et al.  Stereochemistries and mechanisms of reactions of electrophiles with organotin compounds , 1987 .

[40]  K. Jurkschat,et al.  Crystal and molecular structure of 1-AZA-5-STANNA-5-methyltricyclo[3.3.3.01,5]undecane.evidence for a transannular donor−acceptor interaction in a tetraorganotin compound , 1986 .

[41]  K. Jurkschat,et al.  Crystal and molecular structure of 1-aza-5-stanna-5-chlorotricyclo[3.3.3.01,5]undecane, a 2,8,9-tricarbastannatrane , 1985 .

[42]  J. Labadie,et al.  Mechanisms of the palladium-catalyzed couplings of acid chlorides with organotin reagents , 1983 .

[43]  F. R. Jensen,et al.  Mechanisms of SE2 reactions: emphasis on organotin compounds , 1983 .

[44]  W. Kitching,et al.  Stereochemistry of trifluoroacetolysis and brominolysis of the cyclohexyl-tin bond , 1982 .

[45]  G. Kabalka,et al.  A mild and convenient procedure for conversion of alkenes into alkyl iodides via reaction of iodine monochloride with organoboranes , 1980 .

[46]  F. R. Jensen,et al.  The role of substrate and media polarity on the stereochemistries of the SF2 bromination of trialkyl-sec-butyltin compounds , 1979 .

[47]  W. Middleton New fluorinating reagents. Dialkylaminosulfur fluorides , 1975 .

[48]  M. Gielen From kinetics to the synthesis of chiral tetraorganotin compounds , 1973 .

[49]  B. Långström,et al.  A 11C-methyl stannane (5-[11C]methyl-1-aza-5-stannabicyclo[3.3.3]undecane) for use in palladium-mediated [11C]C-C bond forming reactions with organohalides , 2004 .