The Cosmic-Ray Ionization Rate in the Galactic Disk, as Determined from Observations of Molecular Ions

We have obtained estimates for the cosmic-ray ionization rate (CRIR) in the Galactic disk, using a detailed model for the physics and chemistry of diffuse interstellar gas clouds to interpret previously-published measurements of the abundance of four molecular ions: ArH$^+$, OH$^+$, H$_2$O$^+$ and H$_3^+$. For diffuse $atomic$ clouds at Galactocentric distances in the range $R_g \sim 4 - 9$ kpc, observations of ArH$^+$, OH$^+$, and H$_2$O$^+$ imply a mean primary CRIR of $(2.2 \pm 0.3) \exp [(R_0-R_g)/4.7\,\rm{kpc}] \times 10^{-16} \rm \, s^{-1}$ per hydrogen atom, where $R_0=8.5$ kpc. Within diffuse $molecular$ clouds observed toward stars in the solar neighborhood, measurements of H$_3^+$ and H$_2$ imply a primary CRIR of $(2.3 \pm 0.6) \times 10^{-16}\,\,\rm s^{-1}$ per H atom, corresponding to a total ionization rate per H$_2$ molecule of $(5.3 \pm 1.1) \times 10^{-16}\,\,\rm s^{-1},$ in good accord with previous estimates. These estimates are also in good agreement with a rederivation, presented here, of the CRIR implied by recent observations of carbon and hydrogen radio recombination lines along the sight-line to Cas A. Here, our best-fit estimate for the primary CRIR is $2.9 \times 10^{-16}\,\,\rm s^{-1}$ per H atom. Our results show marginal evidence that the CRIR in diffuse molecular clouds decreases with cloud extinction, $A_{\rm V}({\rm tot})$, with a best-fit dependence $\propto A_{\rm V}({\rm tot})^{-1}$ for $A_{\rm V}({\rm tot}) \ge 0.5$.

[1]  J. Mitchell The dissociative recombination of molecular ions , 1990 .

[2]  T. Miller,et al.  A laboratory study of the reactions of N+, N2+, N3+, N4+, O+, O2+, and NO+ ions with several molecules at 300 K , 1978 .

[3]  W. Huntress,et al.  Reactions of OH+ and H2O+ ions with some diatomic and simple polyatomic molecules , 1978 .

[4]  K. Menten,et al.  CHEMICAL ANALYSIS OF A DIFFUSE CLOUD ALONG A LINE OF SIGHT TOWARD W51: MOLECULAR FRACTION AND COSMIC-RAY IONIZATION RATE , 2012, 1208.3202.

[5]  M. Larsson,et al.  Dissociative Recombination of Molecular Ions , 2008 .

[6]  Christopher F. McKee,et al.  THE DARK MOLECULAR GAS , 2010, 1004.5401.

[7]  P. Hennebelle,et al.  Herschel/HIFI observations of interstellar OH+ and H2O+ towards W49N: a probe of diffuse clouds with a small molecular fraction , 2010, 1007.0987.

[8]  R. Saykally,et al.  Dissociative recombination of rotationally cold H3 , 2004 .

[9]  W. Huntress,et al.  Ion‐molecule reactions and vibrational deactivation of H2+ ions in mixtures of hydrogen and helium , 1974 .

[10]  W. Webber,et al.  GALACTIC COSMIC RAYS IN THE LOCAL INTERSTELLAR MEDIUM: VOYAGER 1 OBSERVATIONS AND MODEL RESULTS , 2016, The Astrophysical journal.

[11]  K. Menten,et al.  [C II] absorption and emission in the diffuse interstellar medium across the Galactic plane , 2014, 1410.4663.

[12]  M. Wolfire,et al.  THE CHEMISTRY OF INTERSTELLAR ARGONIUM AND OTHER PROBES OF THE MOLECULAR FRACTION IN DIFFUSE CLOUDS , 2016, 1607.00375.

[13]  H. Liszt HD/H2 AS A PROBE OF THE ROLES OF GAS, DUST, LIGHT, METALLICITY, AND COSMIC RAYS IN PROMOTING THE GROWTH OF MOLECULAR HYDROGEN IN THE DIFFUSE INTERSTELLAR MEDIUM , 2014, 1411.5055.

[14]  D. York,et al.  Abundances and Behavior of 12CO, 13CO, and C2 in Translucent Sight Lines , 2006, astro-ph/0608557.

[15]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[16]  B. Draine,et al.  Collisional charging of interstellar grains , 1987 .

[17]  M. Gerin,et al.  Sulphur-bearing molecules in diffuse molecular clouds: new results from SOFIA/GREAT and the IRAM 30 m telescope , 2015, 1502.05710.

[18]  J. Goicoechea,et al.  THE CHEMISTRY OF INTERSTELLAR OH+, H2O+, AND H3O+: INFERRING THE COSMIC-RAY IONIZATION RATES FROM OBSERVATIONS OF MOLECULAR IONS , 2012, 1205.6446.

[19]  Benjamin J. McCall,et al.  Diffuse Atomic and Molecular Clouds , 2006 .

[20]  A. Dalgarno,et al.  Electron Energy Deposition in a Gas Mixture of Atomic and Molecular Hydrogen and Helium , 1999 .

[21]  Harvey S. Liszt,et al.  The velocity field of ionized gas near Sgr A$^{\ast}$ , 2003 .

[22]  R. Saykally,et al.  An enhanced cosmic-ray flux towards ζ Persei inferred from a laboratory study of the H3+–e- recombination rate , 2003, Nature.

[23]  A. Tielens,et al.  Neutral Atomic Phases of the Interstellar Medium in the Galaxy , 2003 .

[24]  K. Menten,et al.  Hydrogen in diffuse molecular clouds in the Milky Way - Atomic column densities and molecular fraction along prominent lines of sight , 2017, 1702.05956.

[25]  B. McCall,et al.  INVESTIGATING THE COSMIC-RAY IONIZATION RATE IN THE GALACTIC DIFFUSE INTERSTELLAR MEDIUM THROUGH OBSERVATIONS OF H+3 , 2011, 1111.6936.

[26]  T. Geballe,et al.  H3+ in Diffuse Interstellar Clouds: A Tracer for the Cosmic-Ray Ionization Rate , 2007, 0709.1114.

[27]  P. Hennebelle,et al.  Interstellar OH+, H2O+ and H3O+ along the sight-line to G10.6–0.4 , 2010, 1005.5653.

[28]  K. Menten,et al.  Ubiquitous Argonium, ArH⁺, in the Diffuse Interstellar Medium , 2014, 1403.7902.

[29]  W. Langer,et al.  Model calculations for diffuse molecular clouds , 1974 .

[30]  P. Stancil,et al.  Charge Transfer in Collisions of C+ with H and H+ with C , 1998 .

[31]  M. C. Toribio,et al.  Low-frequency Carbon Radio Recombination Lines. I. Calculations of Departure Coefficients , 2016, 1609.06938.

[32]  B. Draine Photoelectric heating of interstellar gas , 1978 .

[33]  K. Menten,et al.  HERSCHEL SURVEY OF GALACTIC OH+, H2O+, AND H3O+: PROBING THE MOLECULAR HYDROGEN FRACTION AND COSMIC-RAY IONIZATION RATE , 2014, 1412.1106.

[34]  Isabelle A. Grenier,et al.  The Nine Lives of Cosmic Rays in Galaxies , 2015 .

[35]  J. Lauroesch,et al.  Interstellar Carbon in Translucent Sight Lines , 2004, astro-ph/0401510.

[36]  T. Henning,et al.  FIRST TIME-DEPENDENT STUDY OF H2 AND H ORTHO–PARA CHEMISTRY IN THE DIFFUSE INTERSTELLAR MEDIUM: OBSERVATIONS MEET THEORETICAL PREDICTIONS , 2014, 1403.6533.

[37]  N. Twiddy,et al.  Rate coefficients and product ion distributions for the reactions of OH+ and H2O+ with N2 , O2, NO. N2O, Xe, CO, CO2, H2S and H2 at 300 K , 1981 .

[38]  The Neutral Atomic Phases of the ISM in the Galaxy , 2002, astro-ph/0207098.

[39]  E. Bron,et al.  Physical conditions in the central molecular zone inferred by H3 , 2015, 1510.02221.

[40]  B. Draine Physics of the Interstellar and Intergalactic Medium , 2011 .

[41]  M. C. Toribio,et al.  LOFAR Cassiopeia A spectral line survey , 2016, 1609.06857.

[42]  G. T. Smirnov,et al.  Detection of radio recombination lines of hydrogen ionized by cosmic-ray protons in the cool interstellar medium , 2010 .