Organization of the stomatogastric ganglion of the spiny lobster

SummaryThe Stomatogastric ganglion ofPanulirus interruptus contains about 30 neurons, and controls the movements of the lobster's stomach. When experimentally isolated, the ganglion continues to generate complex rhythmic patterns of activity in its motor neurons which are similar to those seen in intact animals.In this paper, we describe the synaptic organization of a group of six neurons which drive the stomach's lateral teeth (Figs. 2, 6). This group includes four motor neurons and two interneurons, all but one of which were recorded and stimulated with intracellular microelectrodes.One pair of synergistic motor neurons, LGN and MGN, are electrotonically coupled and reciprocally inhibitory (Figs. 9, 12). A second pair of synergistic motor neurons, the LPGNs, are antagonists of LGN and MGN. The LPGNs are electrotonically coupled (Fig. 14), and are both inhibited by LGN and MGN (Figs. 8, 11). The LPGNs inhibit MGN (Fig. 15) but not LGN. One of the two interneurons in the ganglion, Int 1, reciprocally inhibits both LGN and MGN (Figs. 10, 13). The other interneuron, Int 2, excites Int 1 and inhibits the LPGNs (Fig. 16). The synaptic connections observed in the ganglion are reflected in the spontaneous activity recorded from the isolated ganglion and from intact animals.From the known synaptic organization and observations on the physiological properties of each of the neurons, we have formulated some hypotheses about the pattern-generating mechanism. We found no evidence that any of the neurons are endogenous bursters.

[1]  J. Johnstone,et al.  The efference copy neurone. , 1971, The Journal of experimental biology.

[2]  Allen I. Selverston,et al.  Structural and Functional Basis of Motor Pattern Generation in the Stomatogastric Ganglion of the Lobster , 1974 .

[3]  E. Kandel,et al.  Local, reflex, and central commands controlling gill and siphon movements in Aplysia. , 1974, Journal of neurophysiology.

[4]  G. Horridge,et al.  Structure and function in the nervous systems of invertebrates , 1965 .

[5]  G. Stent,et al.  Neuronal control of swimming in the medicinal leech , 1974, Journal of comparative physiology.

[6]  Allen I. Selverston,et al.  Organization of the stomatogastric ganglion of the spiny lobster , 2004, Journal of comparative physiology.

[7]  D. Bentley,et al.  Intracellular activity in cricket neurons during the generation of behaviour patterns. , 1969, Journal of insect physiology.

[8]  G. Hoyle,et al.  The neuronal basis of behavior in Tritonia. 3. Neuronal mechanism of a fixed action pattern. , 1973, Journal of neurobiology.

[9]  E. Holst Die relative Koordination , 1939 .

[10]  M. V. Bennett,et al.  Morphological demonstration of electrotonic coupling of neurons by way of presynaptic fibers. , 1972, Brain research.

[11]  R. Ryall,et al.  Intersegmental and intrasegmental distribution of mutual inhibition of Renshaw cells. , 1971, Journal of Neurophysiology.

[12]  C. Wiersma,et al.  AUTOGENIC RHYTHMICITY IN THE ABDOMINAL GANGLIA OF THE CRAYFISH: THE CONTROL OF SWIMMERET MOVEMENTS. , 1964, Comparative biochemistry and physiology.

[13]  T. Narahashi RESTORATION OF ACTION POTENTIAL BY ANODAL POLARIZATION IN LOBSTER GIANT AXONS. , 1964 .

[14]  K G Pearson,et al.  Properties of action potentials from insect motor nerve fibres. , 1970, The Journal of experimental biology.

[15]  A. Selverston,et al.  Antidromic Action Potentials Fail to Demonstrate Known Interactions between Neurons , 1972, Science.

[16]  A. Watanabe,et al.  Electrical Properties of the Pacemaker Neurons in the Heart Ganglion of a Stomatopod, Squilla oratoria , 1967, The Journal of general physiology.

[17]  D. Maynard,et al.  The structure of the stomatogastric neuromuscular system in Callinectes sapidus, Homarus americanus and Panulirus argus (Decapoda Crustacea). , 1974, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[18]  R. Wyman,et al.  MOTOR OUTPUT PATTERNS DURING RANDOM AND RHYTHMIC STIMULATION OF LOCUST THORACIC GANGLIA. , 1965, Biophysical journal.

[19]  S. Grillner Locomotion in vertebrates: central mechanisms and reflex interaction. , 1975, Physiological reviews.

[20]  J. Orlov Über den histologischen Bau der Ganglien des Mundmagennervensystems der Crustaceen , 1929, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[21]  M. Bennett,et al.  PHYSIOLOGY OF ELECTROTONIC JUNCTIONS * , 1966, Annals of the New York Academy of Sciences.

[22]  I. Waldron The mechanism of coupling of the locust flight oscillator to oscillatory inputs , 1968, Zeitschrift für vergleichende Physiologie.

[23]  Allen I. Selverston,et al.  The Use of Intracellular Dye Injections in the Study of Small Neural Networks , 1973 .

[24]  K. Pearson Central Programming and Reflex Control of Walking in the Cockroach , 1972 .

[25]  T. Huxley The crayfish;: An introduction to the study of zoology , 1880 .

[26]  Daniel L. Alkon,et al.  Responses of Photoreceptors in Hermissenda , 1972, The Journal of general physiology.

[27]  Wolfram Kutsch Neuromuskuläre Aktivität bei verschiedenen Verhaltensweisen von drei Grillenarten , 1969, Zeitschrift für vergleichende Physiologie.

[28]  C. Yonge Studies on comparative physiology of digestion , 1923 .

[29]  D. Maynard,et al.  Recordings from the stomatogastric nervous system in intact lobsters , 1970 .

[30]  M. Dennis Electrophysiology of the visual system in a nudibranch mollusc. , 1967, Journal of Neurophysiology.

[31]  L. Powers Gastric mill rhythms in intact crabs , 1973 .

[32]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[33]  A. Arvanitaki,et al.  Electrical Properties and Temporal Organization in Oscillatory Neurons , 1968 .

[34]  D. M. Wilson Central nervous mechanisms for the generation of rhythmic behaviour in arthropods. , 1966, Symposia of the Society for Experimental Biology.

[35]  B. Mulloney Organization of flight motoneurons of diptera. , 1970, Journal of neurophysiology.

[36]  R S Zucker,et al.  Crayfish escape behavior and central synapses. I. Neural circuit exciting lateral giant fiber. , 1972, Journal of neurophysiology.

[37]  D. Hartline,et al.  Motor patterns in the stomatogastric ganglion of the lobster Panulirus argus. , 1975, The Journal of experimental biology.

[38]  S. Hagiwara,et al.  Nervous activities of the heart in Crustacea. , 1961, Ergebnisse der Biologie.

[39]  D. C. Sandeman The excitation and electrical coupling of four identified motoneurons in the brain of the Australian mud crab, Scylla serrata , 1971, Zeitschrift für vergleichende Physiologie.

[40]  S. B. Kater,et al.  An endogenously bursting neuron in the gastropod mollusc,Helisoma trivolvis , 1972, Journal of Comparative Physiology.

[41]  A. Selverston,et al.  Organization of the stomatogastric ganglion of the spiny lobster , 2004, Journal of comparative physiology.

[42]  S. B. Kater,et al.  Feeding in Helisoma trivolvis: The Morphological and Physiological Bases of a Fixed Action Pattern , 1974 .

[43]  P. Stein Intersegmental coordination of swimmeret motoneuron activity in crayfish. , 1971, Journal of neurophysiology.

[44]  M. Spira,et al.  Synaptic control of electrotonic coupling between neurons. , 1972, Brain research.

[45]  Donald M. Wilson The Central Nervous Control of Flight in a Locust , 1961 .

[46]  A. Selverston,et al.  Command fibres from the supra-oesophageal ganglion to the stomatogastric ganglion inPanulirus argus , 1972, Journal of comparative physiology.

[47]  M. Burrows Co-ordinating interneurones of the locust which convey two patterns of motor commands: their connexions with flight motoneurones. , 1975, The Journal of experimental biology.

[48]  A. Hodgkin,et al.  The dual effect of membrane potential on sodium conductance in the giant axon of Loligo , 1952, The Journal of physiology.

[49]  R. Wyman Multistable firing patterns among several neurons. , 1966, Journal of neurophysiology.

[50]  J. L. Larimer,et al.  Visceral afferent signals in the crayfish stomatogastric ganglion. , 1966, The Journal of experimental biology.

[51]  M DeLong,et al.  Central control of movement. II. Central patterning of movement. , 1971, Neurosciences Research Program bulletin.

[52]  H. Wachtel,et al.  Organization of inhibition in abdominal ganglion of Aplysia. I. Role of inhibition and disinhibition in transforming neural activity. , 1969, Journal of neurophysiology.