Ultrasonic enhancement of bead-based bioaffinity assays.

Ultrasonic radiation forces can be used for non-intrusive manipulation and concentration of suspended micrometer-sized particles. For bioanalytical purposes, standing-wave ultrasound has long been used for rapid immuno-agglutination of functionalized latex beads. More recently, detection methods based on laser-scanning fluorometry and single-step homogeneous bead-based assays show promise for fast, easy and sensitive biochemical analysis. If such methods are combined with ultrasonic enhancement, detection limits in the femtomolar region are feasible. In this paper, we review the development of standing-wave ultrasonic manipulation for bioanalysis, with special emphasis on miniaturization and ultrasensitive bead-based immunoassays.

[1]  T. Laurell,et al.  Continuous separation of lipid particles from erythrocytes by means of laminar flow and acoustic standing wave forces. , 2005, Lab on a chip.

[2]  Gabriele Gradl,et al.  The potential of dielectrophoresis for single-cell experiments. , 2003, IEEE engineering in medicine and biology magazine : the quarterly magazine of the Engineering in Medicine & Biology Society.

[3]  T. Joos,et al.  Protein microarray technology. , 2002, Trends in biotechnology.

[4]  Martyn Hill,et al.  The selection of layer thicknesses to control acoustic radiation force profiles in layered resonators. , 2003, The Journal of the Acoustical Society of America.

[5]  M. Groschl,et al.  Ultrasonic separation of suspended particles , 2001, 2001 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No.01CH37263).

[6]  M A Sobanski,et al.  Ultrasonic enhancement of coated particle agglutination immunoassays: influence of particle density and compressibility. , 1999, Ultrasound in medicine & biology.

[7]  R. Ekins,et al.  Multi-analyte immunoassay. , 1989, Journal of pharmaceutical and biomedical analysis.

[8]  Andrei V Chernyshev,et al.  Fluorescence-microscopy-based image analysis for analyte-dependent particle doublet detection in a single-step immunoagglutination assay. , 2005, Analytical biochemistry.

[9]  E E Swartzman,et al.  A homogeneous and multiplexed immunoassay for high-throughput screening using fluorometric microvolume assay technology. , 1999, Analytical biochemistry.

[10]  W. Coakley,et al.  Ultrasound enhanced detection of individual meningococcal serogroups by latex immunoassay. , 2002, Journal of clinical pathology.

[11]  Martyn Hill,et al.  Spore and micro-particle capture on an immunosensor surface in an ultrasound standing wave system. , 2005, Biosensors & bioelectronics.

[12]  D. Clarke,et al.  Agglutination of Legionella pneumophila by antiserum is accelerated in an ultrasonic standing wave. , 1989, Journal of immunological methods.

[13]  H M Hertz,et al.  Ultrasonic-trap-enhanced selectivity in capillary electrophoresis. , 2003, Ultrasonics.

[14]  A. Kundt,et al.  Ueber longitudinale Schwingungen und Klangfiguren in cylindrischen Flüssigkeitssäulen , 1874 .

[15]  Neil M. White,et al.  A silicon microfluidic ultrasonic separator , 2003 .

[16]  Nerys E. Thomas,et al.  Sub-micron particle manipulation in an ultrasonic standing wave: Applications in detection of clinically important biomolecules , 2000, Bioseparation.

[17]  Mary B Meza,et al.  Bead-based HTS applications in drug discovery , 2000 .

[18]  W. Coakley,et al.  Measurement of Serum Antigen Concentration by Ultrasound-Enhanced Immunoassay and Correlation with Clinical Outcome in Meningococcal Disease , 2000, European Journal of Clinical Microbiology and Infectious Diseases.

[19]  M. Wiklunda Ultrasonic trapping in capillaries for trace-amount biomedical analysis , 2001 .

[20]  W L Nyborg,et al.  Mechanisms for nonthermal effects of sound. , 1968, The Journal of the Acoustical Society of America.

[21]  R W Ellis,et al.  Diagnostic particle agglutination using ultrasound: a new technology to rejuvenate old microbiological methods. , 2000, Journal of medical microbiology.

[22]  C. E. Looney,et al.  Novel shell/core particles for automated turbidimetric immunoassays. , 1984, Clinical chemistry.

[23]  Elisabeth Verpoorte,et al.  Beads and chips: new recipes for analysis. , 2003, Lab on a chip.

[24]  Thomas Laurell,et al.  Acoustic control of suspended particles in micro fluidic chips. , 2004, Lab on a chip.

[25]  W. Coakley,et al.  Increased sensitivity of diagnostic latex agglutination tests in an ultrasonic standing wave field. , 1994, Journal of immunological methods.

[26]  Duc Truong Pham,et al.  Characterisation of the morphology of 2-D particle aggregates in different electrolyte concentrations in an ultrasound trap , 2004 .

[27]  E. Benes,et al.  Rapid agglutination testing in an ultrasonic standing wave. , 1993, Journal of immunological methods.

[28]  Thomas Laurell,et al.  Trapping of microparticles in the near field of an ultrasonic transducer. , 2005, Ultrasonics.

[29]  R. Ekins,et al.  Multianalyte microspot immunoassay. The microanalytical 'compact disk' of the future. , 1992, Annales de biologie clinique.

[30]  N. D. Rooij,et al.  Fast microarray functionalization with probe beads for lab-on-chip affinity assay , 2005 .

[31]  Pekka Hänninen,et al.  Ultrasonic enrichment of microspheres for ultrasensitive biomedical analysis in confocal laser-scanning fluorescence detection , 2004 .

[32]  K. Nustad,et al.  A sequential binding assay with a working range extending beyond seven orders of magnitude. , 1995, Journal of immunological methods.

[33]  Thomas Laurell,et al.  Carrier medium exchange through ultrasonic particle switching in microfluidic channels. , 2005, Analytical chemistry.

[34]  W. Kapmeyer,et al.  Automated nephelometric immunoassays with novel shell/core particles , 1988 .

[35]  P Tabeling,et al.  Improving agglutination tests by working in microfluidic channels. , 2005, Lab on a chip.

[36]  Adrian Neild,et al.  Positioning, displacement, and localization of cells using ultrasonic forces. , 2005, Biotechnology and bioengineering.

[37]  J. Molina-Bolívar,et al.  Latex Immunoagglutination Assays , 2005 .

[38]  Ewald Benes,et al.  General one‐dimensional treatment of the layered piezoelectric resonator with two electrodes , 1987 .

[39]  P. Todd,et al.  Field-assisted extraction of cells, particles and macromolecules. , 2002, Trends in biotechnology.

[40]  W. Coakley,et al.  Upper sound pressure limits on particle concentration in fields of ultrasonic standing-wave at megahertz frequencies , 1992 .

[41]  K. Burman,et al.  A rapid, sensitive enzyme-linked immunoassay for human thyrotropin. , 1985, Clinical chemistry.

[42]  C. Plotz,et al.  The latex fixation test. I. Application to the serologic diagnosis of rheumatoid arthritis. , 1956, The American journal of medicine.

[43]  Thomas Laurell,et al.  Dynamic arraying of microbeads for bioassays in microfluidic channels , 2005 .

[44]  H M Hertz,et al.  Ultrasonic standing wave manipulation technology integrated into a dielectrophoretic chip. , 2006, Lab on a chip.

[45]  J. Koskinen,et al.  A lab-on-a-chip compatible bioaffinity assay method for human α-fetoprotein , 2005 .

[46]  E. Brandt Levitation in Physics , 1989, Science.

[47]  T. Soukka,et al.  Supersensitive time-resolved immunofluorometric assay of free prostate-specific antigen with nanoparticle label technology. , 2001, Clinical chemistry.

[48]  Jeremy J Hawkes,et al.  Ultrasonic deposition of cells on a surface. , 2004, Biosensors & bioelectronics.

[49]  T Kaneta,et al.  Application of optical chromatography to immunoassay. , 1997, Analytical chemistry.

[50]  W Terence Coakley,et al.  Sub-micron particle behaviour and capture at an immuno-sensor surface in an ultrasonic standing wave. , 2005, Biosensors & bioelectronics.

[51]  J. Hawkes,et al.  Analytical scale ultrasonic standing wave manipulation of cells and microparticles. , 2000, Ultrasonics.

[52]  W. Coakley,et al.  Highly sensitive detection of fungal antigens by ultrasound-enhanced latex agglutination. , 1995, Journal of medical and veterinary mycology : bi-monthly publication of the International Society for Human and Animal Mycology.

[53]  Hans M. Hertz,et al.  Standing-wave Acoustic Trap For Nonintrusive Positioning of Microparticles , 1995 .

[54]  Robert W Barber,et al.  Continuous cell washing and mixing driven by an ultrasound standing wave within a microfluidic channel. , 2004, Lab on a chip.

[55]  R. Ellis,et al.  Rotavirus Detection Using Ultrasound Enhanced Latex Agglutination and Turbidimetry , 2000, Journal of immunoassay.

[56]  E Tamiya,et al.  Multisample analysis using an array of microreactors for an alternating-current field-enhanced latex immunoassay. , 1994, Analytical chemistry.

[57]  E. Brandt,et al.  Acoustic physics: Suspended by sound , 2001, Nature.

[58]  E. F. Ullman,et al.  Luminescent oxygen channeling immunoassay: measurement of particle binding kinetics by chemiluminescence. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[59]  W. Coakley,et al.  Meningitis antigen detection: interpretation of agglutination by ultrasound-enhanced latex immunoassay. , 1999, British journal of biomedical science.

[60]  Jeremy J. Hawkes,et al.  Force field particle filter, combining ultrasound standing waves and laminar flow , 2001 .

[61]  C. Mirkin,et al.  Nanoparticle-Based Bio-Bar Codes for the Ultrasensitive Detection of Proteins , 2003, Science.

[62]  J. C. Poggendorff Ueber das Verhalten des Quecksilbers bei seiner elektro-magnetischen Rotation , 2022 .

[63]  Mattias Goksör,et al.  Optical tweezers applied to a microfluidic system. , 2004, Lab on a chip.

[64]  L. Hilsted,et al.  Discrepancies between thyrotropin (TSH) measurement by four sensitive immunometric assays. , 1997, Clinica chimica acta; international journal of clinical chemistry.

[65]  R. R. Whymark,et al.  Acoustic field positioning for containerless processing , 1975 .

[66]  R. Munro,et al.  Ultrasound‐enhanced latex immunoagglutination test (USELAT) for detection of capsular polysaccharide antigen of Neisseria meningitidis from CSF and plasma , 2003, Pathology.

[67]  H. Kawaguchi,et al.  Functional Polymer-microspheres , 1984 .

[68]  Woo-Sik Kim,et al.  Effects of surface characteristics on non-specific agglutination in latex immunoagglutination antibody assay , 2003 .

[69]  M Hill,et al.  A dual frequency, ultrasonic, microengineered particle manipulator. , 2004, Ultrasonics.

[70]  Ryuji Koyama,et al.  Counting and sizing of particles and particle agglomerates in a microfluidic device using laser light scattering: application to a particle-enhanced immunoassay. , 2003, Lab on a chip.

[71]  Pekka Hänninen,et al.  A new microvolume technique for bioaffinity assays using two-photon excitation , 2000, Nature Biotechnology.

[72]  W. Coakley,et al.  Ultrasonic Trap To Monitor Morphology and Stability of Developing Microparticle Aggregates , 2003 .

[73]  P. Masson Particle counting immunoassay--an overview. , 1987, Journal of pharmaceutical and biomedical analysis.

[74]  Kinetics of the initial stage of immunoagglutionation studied with the scanning flow cytometer , 2008, 0807.4645.

[75]  Jonne Vaarno,et al.  Fluorescent nanoparticles as labels for immunometric assay of C-reactive protein using two-photon excitation assay technology. , 2004, Analytical biochemistry.

[76]  W. Coakley,et al.  Detection of meningitis antigens in buffer and body fluids by ultrasound-enhanced particle agglutination. , 1997, Journal of immunological methods.

[77]  John P Nolan,et al.  Suspension array technology: evolution of the flat-array paradigm. , 2002, Trends in biotechnology.

[78]  Malcolm Guiver,et al.  Ultrasound-Enhanced Latex Immunoagglutination and PCR as Complementary Methods for Non-Culture-Based Confirmation of Meningococcal Disease , 1999, Journal of Clinical Microbiology.

[79]  Amit Lal,et al.  Ultrasonic separation in microfluidic capillaries , 2003, IEEE Symposium on Ultrasonics, 2003.

[80]  E. Yeung,et al.  Laser-based particle-counting microimmunoassay for the analysis of single human erythrocytes. , 1994, Analytical chemistry.

[81]  N. Riley Acoustic Streaming , 1998 .

[82]  W. Coakley,et al.  Preliminary clinical evaluation of meningococcal disease and bacterial meningitis by ultrasonic enhancement , 1998, Archives of disease in childhood.

[83]  H. Hertz,et al.  Microparticles for selective protein determination in capillary electrophoresis , 2001, Electrophoresis.

[84]  R. A. Kamin,et al.  Electrochemiluminescence detection for development of immunoassays and DNA probe assays for clinical diagnostics. , 1991, Clinical chemistry.

[85]  L. Gor’kov,et al.  On the forces acting on a small particle in an acoustical field in an ideal fluid , 1962 .

[86]  N. E. Thomas,et al.  Measurement of antigen concentration by an ultrasound-enhanced latex immunoagglutination assay. , 1996, Ultrasound in medicine & biology.

[87]  F W Chu,et al.  Multianalyte microspot immunoassay--microanalytical "compact disk" of the future. , 1991, Clinical chemistry.

[88]  R. Cohen,et al.  Determination of cluster size distributions using an optical pulse particle size analyzer , 1985 .

[89]  P. Upadhyay,et al.  A novel ultrasound-enhanced latex agglutination test for the detection of antibodies against Mycobacterium tuberculosis in serum. , 2002, Journal of immunological methods.

[90]  Ultrasonic Enrichment of Microparticles in Bioaffinity Assays , 2004 .

[91]  Mike Hoare,et al.  Rapid monitoring of recombinant protein products: a comparison of current technologies. , 2002, Trends in biotechnology.

[92]  K. Shigeno,et al.  Clinical Significance of mdm2 and p53 Expression in Bladder Cancer , 1999, Oncology.

[93]  H E Hart,et al.  Scintillation proximity assay (SPA)--a new method of immunoassay. Direct and inhibition mode detection with human albumin and rabbit antihuman albumin. , 1979, Molecular immunology.

[94]  W T Coakley,et al.  Rapid detection of hepatitis B virus using a haemagglutination assay in an ultrasonic standing wave field. , 1989, Journal of clinical & laboratory immunology.

[95]  L. Wheeless,et al.  Quantitative single cell analysis and sorting. , 1977, Science.

[96]  R. Vainionpää,et al.  A novel separation-free assay technique for serum antibodies using antibody bridging assay principle and two-photon excitation fluorometry. , 2006, Journal of immunological methods.

[97]  M A Sobanski,et al.  Detection of adenovirus and rotavirus antigens by an immuno-gold lateral flow test and ultrasound-enhanced latex agglutination assay. , 2001, Journal of medical microbiology.