Isogeometric Discrete Differential Forms in Three Dimensions

The concept of isogeometric analysis (IGA) was first applied to the approximation of Maxwell equations in [A. Buffa, G. Sangalli, and R. Vazquez, Comput. Methods Appl. Mech. Engrg., 199 (2010), pp. 1143-1152]. The method is based on the construction of suitable B-spline spaces such that they verify a De Rham diagram. Its main advantages are that the geometry is described exactly with few elements, and the computed solutions are smoother than those provided by finite elements. In this paper we develop the theoretical background to the approximation of vector fields in IGA. The key point of our analysis is the definition of suitable projectors that render the diagram commutative. The theory is then applied to the numerical approximation of Maxwell source problems and eigenproblems, and numerical results showing the good behavior of the scheme are also presented.

[1]  G. Sangalli,et al.  A fully ''locking-free'' isogeometric approach for plane linear elasticity problems: A stream function formulation , 2007 .

[2]  G. Sangalli,et al.  Isogeometric analysis in electromagnetics: B-splines approximation , 2010 .

[3]  C. Schwab P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .

[4]  Salvatore Caorsi,et al.  On the Convergence of Galerkin Finite Element Approximations of Electromagnetic Eigenproblems , 2000, SIAM J. Numer. Anal..

[5]  D. Boffi,et al.  Computational Models of Electromagnetic Resonators: Analysis of Edge Element Approximation , 1999 .

[6]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[7]  Peter Monk,et al.  Finite Element Methods for Maxwell's Equations , 2003 .

[8]  R. Hiptmair Finite elements in computational electromagnetism , 2002, Acta Numerica.

[9]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[10]  T. Hughes,et al.  Efficient quadrature for NURBS-based isogeometric analysis , 2010 .

[11]  Thomas J. R. Hughes,et al.  n-Widths, sup–infs, and optimality ratios for the k-version of the isogeometric finite element method , 2009 .

[12]  T. Hughes,et al.  Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .

[13]  Gianni Gilardi,et al.  Magnetostatic and Electrostatic Problems in Inhomogeneous Anisotropic Media with Irregular Boundary and Mixed Boundary Conditions , 1997 .

[14]  D. Arnold,et al.  Finite element exterior calculus: From hodge theory to numerical stability , 2009, 0906.4325.

[15]  Giancarlo Sangalli,et al.  Isogeometric Analysis: new stable elements for the Stokes equation , 2010 .

[16]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[17]  Alessandro Reali,et al.  Duality and unified analysis of discrete approximations in structural dynamics and wave propagation : Comparison of p-method finite elements with k-method NURBS , 2008 .

[18]  D. Arnold,et al.  Finite element exterior calculus, homological techniques, and applications , 2006, Acta Numerica.

[19]  Nicholas S. North,et al.  T-spline simplification and local refinement , 2004, SIGGRAPH 2004.

[20]  Ralf Hiptmair,et al.  Discrete Compactness for the p-Version of Discrete Differential Forms , 2009, SIAM J. Numer. Anal..

[21]  John A. Evans,et al.  Robustness of isogeometric structural discretizations under severe mesh distortion , 2010 .

[22]  Giancarlo Sangalli,et al.  IsoGeometric Analysis: Stable elements for the 2D Stokes equation , 2011 .

[23]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[24]  Martin Costabel,et al.  Computation of resonance frequencies for Maxwell equations in non-smooth domains , 2003 .

[25]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[26]  Annalisa Buffa,et al.  Remarks on the Discretization of Some Noncoercive Operator with Applications to Heterogeneous Maxwell Equations , 2005, SIAM J. Numer. Anal..

[27]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[28]  Giancarlo Sangalli,et al.  Some estimates for h–p–k-refinement in Isogeometric Analysis , 2011, Numerische Mathematik.

[29]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..