Nanoporous mannitol carrier prepared by non-organic solvent spray drying technique to enhance the aerosolization performance for dry powder inhalation

[1]  Javier Rodríguez Pinto,et al.  Nanoporous polymeric materials: A new class of materials with enhanced properties , 2016 .

[2]  T. Langrish,et al.  Incorporation of acetaminophen as an active pharmaceutical ingredient into porous lactose. , 2016, International journal of pharmaceutics.

[3]  Shengqian Ma,et al.  Applications of metal-organic frameworks featuring multi-functional sites , 2016 .

[4]  Katsuhiko Ariga,et al.  Templated Synthesis for Nanoarchitectured Porous Materials , 2015 .

[5]  H. Smyth,et al.  Evaluation of Granulated Lactose as a Carrier for DPI Formulations 1: Effect of Granule Size , 2014, AAPS PharmSciTech.

[6]  V. Pokharkar,et al.  Single step spray drying method to develop proliposomes for inhalation: a systematic study based on quality by design approach. , 2014, Pulmonary pharmacology & therapeutics.

[7]  H. Frijlink,et al.  New Mechanisms to Explain the Effects of Added Lactose Fines on the Dispersion Performance of Adhesive Mixtures for Inhalation , 2014, PloS one.

[8]  A. Healy,et al.  Steroid/mucokinetic hybrid nanoporous microparticles for pulmonary drug delivery. , 2013, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[9]  Peter Walzel,et al.  The morphology and various densities of spray dried mannitol , 2013 .

[10]  Chi-Chang Hu,et al.  Evaporation-induced coating of hydrous ruthenium oxide on mesoporous silica nanoparticles to develop high-performance supercapacitors. , 2013, Small.

[11]  Teppei Yamada Proton Conductive Metal-Organic Frameworks , 2013 .

[12]  N. Urbanetz,et al.  The morphology of spray dried mannitol particles — The vital importance of droplet size , 2013 .

[13]  Waseem Kaialy,et al.  Treating mannitol in a saturated solution of mannitol: a novel approach to modify mannitol crystals for improved drug delivery to the lungs. , 2013, International journal of pharmaceutics.

[14]  M. Kappl,et al.  Preparation and characterization of physically modified glass beads used as model carriers in dry powder inhalers. , 2013, International journal of pharmaceutics.

[15]  A. Yu,et al.  Effects of mechanical impaction on aerosol performance of particles with different surface roughness , 2013 .

[16]  P. Young,et al.  Polymer coating of carrier excipients modify aerosol performance of adhered drugs used in dry powder inhalation therapy. , 2012, International journal of pharmaceutics.

[17]  Waseem Kaialy,et al.  Influence of lactose carrier particle size on the aerosol performance of budesonide from a dry powder inhaler , 2012 .

[18]  D. Morton,et al.  Drug-lactose binding aspects in adhesive mixtures: controlling performance in dry powder inhaler formulations by altering lactose carrier surfaces. , 2012, Advanced drug delivery reviews.

[19]  K. Wu,et al.  Controlling physical features of mesoporous silica nanoparticles (MSNs) for emerging applications , 2012 .

[20]  N. Urbanetz,et al.  Spray Drying of Mannitol as a Drug Carrier—The Impact of Process Parameters on Product Properties , 2012 .

[21]  Waseem Kaialy,et al.  The influence of physical properties and morphology of crystallised lactose on delivery of salbutamol sulphate from dry powder inhalers. , 2012, Colloids and surfaces. B, Biointerfaces.

[22]  P. Young,et al.  Does carrier size matter? A fundamental study of drug aerosolisation from carrier based dry powder inhalation systems. , 2011, International journal of pharmaceutics.

[23]  K. Wu,et al.  Controlling Particle Size and Structural Properties of Mesoporous Silica Nanoparticles Using the Taguchi Method , 2011 .

[24]  A. Healy,et al.  Particle engineering of materials for oral inhalation by dry powder inhalers. I-Particles of sugar excipients (trehalose and raffinose) for protein delivery. , 2011, International journal of pharmaceutics.

[25]  Waseem Kaialy,et al.  The enhanced aerosol performance of salbutamol from dry powders containing engineered mannitol as excipient. , 2010, International journal of pharmaceutics.

[26]  A. Healy,et al.  Excipient-free nanoporous microparticles of budesonide for pulmonary delivery. , 2009, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[27]  F. Iskandar,et al.  Production of morphology-controllable porous hyaluronic acid particles using a spray-drying method. , 2009, Acta biomaterialia.

[28]  A. Healy,et al.  Characterisation of excipient-free nanoporous microparticles (NPMPs) of bendroflumethiazide. , 2008, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[29]  R. Guchardi,et al.  Influence of fine lactose and magnesium stearate on low dose dry powder inhaler formulations. , 2008, International journal of pharmaceutics.

[30]  W. Rae,et al.  Composite carriers improve the aerosolisation efficiency of drugs for respiratory delivery , 2008 .

[31]  R. Tan,et al.  Dry powder aerosol delivery of large hollow nanoparticulate aggregates as prospective carriers of nanoparticulate drugs: effects of phospholipids. , 2007, International journal of pharmaceutics.

[32]  H. Junginger,et al.  Non-invasive pulmonary aerosol delivery in mice by the endotracheal route. , 2005, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[33]  G. P. Martin,et al.  The Influence of Crystallization Conditions on the Morphology of Lactose Intended for Use as a Carrier for Dry Powder Aerosols , 2000, The Journal of pharmacy and pharmacology.