Leveraging quantum annealing for large MIMO processing in centralized radio access networks

User demand for increasing amounts of wireless capacity continues to outpace supply, and so to meet this demand, significant progress has been made in new MIMO wireless physical layer techniques. Higher-performance systems now remain impractical largely only because their algorithms are extremely computationally demanding. For optimal performance, an amount of computation that increases at an exponential rate both with the number of users and with the data rate of each user is often required. The base station's computational capacity is thus becoming one of the key limiting factors on wireless capacity. QuAMax is the first large MIMO centralized radio access network design to address this issue by leveraging quantum annealing on the problem. We have implemented QuAMax on the 2,031 qubit D-Wave 2000Q quantum annealer, the state-of-the-art in the field. Our experimental results evaluate that implementation on real and synthetic MIMO channel traces, showing that 10 µs of compute time on the 2000Q can enable 48 user, 48 AP antenna BPSK communication at 20 dB SNR with a bit error rate of 10-6 and a 1,500 byte frame error rate of 10-4.

[1]  Vasil S. Denchev,et al.  Computational multiqubit tunnelling in programmable quantum annealers , 2015, Nature Communications.

[2]  S. Knysh,et al.  Quantum Optimization of Fully-Connected Spin Glasses , 2014, 1406.7553.

[3]  Andreas Peter Burg,et al.  Area- and throughput-optimized VLSI architecture of sphere decoding , 2010, 2010 18th IEEE/IFIP International Conference on VLSI and System-on-Chip.

[4]  Daniel A. Lidar,et al.  Solving a Higgs optimization problem with quantum annealing for machine learning , 2017, Nature.

[5]  Catherine C. McGeoch Adiabatic Quantum Computation and Quantum Annealing: Theory and Practice , 2014, Adiabatic Quantum Computation and Quantum Annealing: Theory and Practice.

[6]  Di Wang,et al.  Analyzing quadratic unconstrained binary optimization problems via multicommodity flows , 2009, Discret. Appl. Math..

[7]  Bryan O'Gorman,et al.  A case study in programming a quantum annealer for hard operational planning problems , 2014, Quantum Information Processing.

[8]  Daniel A. Lidar,et al.  Exploring More-Coherent Quantum Annealing , 2018, 2018 IEEE International Conference on Rebooting Computing (ICRC).

[9]  Shuangshuang Han,et al.  Probability-Distribution-Based Node Pruning for Sphere Decoding , 2013, IEEE Transactions on Vehicular Technology.

[10]  Masato Okada,et al.  Code-division multiple-access multiuser demodulator by using quantum fluctuations. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Babak Hassibi,et al.  On the sphere-decoding algorithm II. Generalizations, second-order statistics, and applications to communications , 2005, IEEE Transactions on Signal Processing.

[12]  Andrew M. Childs,et al.  Robustness of adiabatic quantum computation , 2001, quant-ph/0108048.

[13]  J. Doll,et al.  Quantum annealing: A new method for minimizing multidimensional functions , 1994, chem-ph/9404003.

[14]  Gerhard Fettweis,et al.  A 335Mb/s 3.9mm2 65nm CMOS flexible MIMO detection-decoding engine achieving 4G wireless data rates , 2012, 2012 IEEE International Solid-State Circuits Conference.

[15]  R. Biswas,et al.  A quantum annealing approach for fault detection and diagnosis of graph-based systems , 2014, The European Physical Journal Special Topics.

[16]  Rinu Jose,et al.  Analysis of hard decision and soft decision decoding algorithms of LDPC codes in AWGN , 2015, 2015 IEEE International Advance Computing Conference (IACC).

[17]  Alexander Vardy,et al.  Closest point search in lattices , 2002, IEEE Trans. Inf. Theory.

[18]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[19]  Jianping Wang,et al.  Efficient routing and wavelength assignment for multicast in WDM networks , 2002, IEEE J. Sel. Areas Commun..

[20]  Wei Wu,et al.  Block length of LDPC codes in fading channels , 2003, The 57th IEEE Semiannual Vehicular Technology Conference, 2003. VTC 2003-Spring..

[21]  Endre Boros,et al.  Local search heuristics for Quadratic Unconstrained Binary Optimization (QUBO) , 2007, J. Heuristics.

[22]  Ryan Babbush,et al.  What is the Computational Value of Finite Range Tunneling , 2015, 1512.02206.

[23]  Hiroshi Ishikawa Higher-order clique reduction in binary graph cut , 2009, CVPR.

[24]  Ness B. Shroff,et al.  Opportunistic transmission scheduling with resource-sharing constraints in wireless networks , 2001, IEEE J. Sel. Areas Commun..

[25]  Erik Dahlman,et al.  4G: LTE/LTE-Advanced for Mobile Broadband , 2011 .

[26]  Vicky Choi,et al.  Minor-embedding in adiabatic quantum computation: II. Minor-universal graph design , 2010, Quantum Inf. Process..

[27]  Catherine C. McGeoch,et al.  Quantum Annealing amid Local Ruggedness and Global Frustration , 2017, Journal of the Physical Society of Japan.

[28]  Georgios Georgis,et al.  FlexCore: Massively Parallel and Flexible Processing for Large MIMO Access Points , 2017, NSDI.

[29]  Hartmut Neven,et al.  Optimizing Variational Quantum Algorithms using Pontryagin's Minimum Principle , 2016, ArXiv.

[30]  Rachel Courtland,et al.  Transistors could stop shrinking in 2021 , 2016 .

[31]  Witold A. Krzymien,et al.  Vector Perturbation Precoding for Network MIMO: Sum Rate, Fair User Scheduling, and Impact of Backhaul Delay , 2012, IEEE Transactions on Vehicular Technology.

[32]  Daniel A. Lidar,et al.  Test-driving 1000 qubits , 2017, Quantum Science and Technology.

[33]  Juan Zhou,et al.  Geosphere: consistently turning MIMO capacity into throughput , 2014, SIGCOMM.

[34]  Daniel A. Lidar,et al.  Defining and detecting quantum speedup , 2014, Science.

[35]  Wei Wang,et al.  SAM: enabling practical spatial multiple access in wireless LAN , 2009, MobiCom '09.

[36]  Emre Telatar,et al.  Capacity of Multi-antenna Gaussian Channels , 1999, Eur. Trans. Telecommun..

[37]  Fred W. Glover,et al.  Quadratic unconstrained binary optimization problem preprocessing: Theory and empirical analysis , 2017, Networks.

[38]  Thomas L. Marzetta,et al.  Argos: practical many-antenna base stations , 2012, Mobicom '12.

[39]  Behrouz A. Forouzan Cryptography & Network Security , 2007 .

[40]  A. Burg,et al.  VLSI implementation of MIMO detection using the sphere decoding algorithm , 2005, IEEE Journal of Solid-State Circuits.

[41]  Óscar Promio Muñoz Quantum Annealing in the transverse Ising Model , 2018 .

[42]  Peter Rost,et al.  Opportunistic Hybrid ARQ—Enabler of Centralized-RAN Over Nonideal Backhaul , 2014, IEEE Wireless Communications Letters.

[43]  Daniel A. Lidar,et al.  Evidence for quantum annealing with more than one hundred qubits , 2013, Nature Physics.

[44]  Cong Wang,et al.  Experimental evaluation of an adiabiatic quantum system for combinatorial optimization , 2013, CF '13.

[45]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[46]  Itay Hen,et al.  Analog errors in Ising machines , 2018, Quantum Science and Technology.

[47]  Emanuele Viterbo,et al.  A universal lattice code decoder for fading channels , 1999, IEEE Trans. Inf. Theory.

[48]  Karthikeyan Sundaresan,et al.  FluidNet: A Flexible Cloud-Based Radio Access Network for Small Cells , 2013, IEEE/ACM Transactions on Networking.

[49]  Travis S. Humble,et al.  Adiabatic quantum programming: minor embedding with hard faults , 2012, Quantum Information Processing.

[50]  Roman Barták,et al.  Constraint Satisfaction Techniques for Planning and Scheduling Problems (COPLAS-15) , 2015 .

[51]  Giuseppe Caire,et al.  On maximum-likelihood detection and the search for the closest lattice point , 2003, IEEE Trans. Inf. Theory.

[52]  Clayton Shepard,et al.  Understanding real many-antenna MU-MIMO channels , 2016, 2016 50th Asilomar Conference on Signals, Systems and Computers.

[53]  D. Venturelli,et al.  Quantum Annealing Implementation of Job-Shop Scheduling , 2015, 1506.08479.

[54]  David Tse,et al.  Fundamentals of Wireless Communication , 2005 .

[55]  Rupak Biswas,et al.  Opportunities and challenges for quantum-assisted machine learning in near-term quantum computers , 2017, Quantum Science and Technology.

[56]  Leandros Tassiulas,et al.  Resource Allocation and Cross-Layer Control in Wireless Networks , 2006, Found. Trends Netw..

[57]  J. Frank,et al.  Compiling Planning into Quantum Optimization Problems: A Comparative Study , 2015 .

[58]  Ramjee Prasad,et al.  OFDM for Wireless Multimedia Communications , 1999 .

[59]  Ken-ichi Kawarabayashi,et al.  Experimental investigation of performance differences between coherent Ising machines and a quantum annealer , 2018, Science Advances.

[60]  Aidan Roy,et al.  Fast clique minor generation in Chimera qubit connectivity graphs , 2015, Quantum Inf. Process..

[61]  Christoph Koch,et al.  Multiple Query Optimization on the D-Wave 2X Adiabatic Quantum Computer , 2015, Proc. VLDB Endow..

[62]  Qing Yang,et al.  BigStation: enabling scalable real-time signal processingin large mu-mimo systems , 2013, SIGCOMM.

[63]  Babak Hassibi,et al.  On the sphere-decoding algorithm I. Expected complexity , 2005, IEEE Transactions on Signal Processing.

[64]  Steven P. Reinhardt,et al.  Partitioning Optimization Problems for Hybrid Classical/Quantum Execution TECHNICAL REPORT , 2017 .

[65]  Endre Boros,et al.  On quadratization of pseudo-Boolean functions , 2012, ISAIM.

[66]  M. Sipser,et al.  Quantum Computation by Adiabatic Evolution , 2000, quant-ph/0001106.

[67]  Maliheh Aramon,et al.  Enhancing quantum annealing performance for the molecular similarity problem , 2017, Quantum Information Processing.

[68]  Andrew Lucas,et al.  Ising formulations of many NP problems , 2013, Front. Physics.

[69]  M. W. Johnson,et al.  Quantum annealing with manufactured spins , 2011, Nature.

[70]  Davide Venturelli,et al.  Reverse quantum annealing approach to portfolio optimization problems , 2018, Quantum Machine Intelligence.

[71]  Nikesh S. Dattani,et al.  Pegasus: The second connectivity graph for large-scale quantum annealing hardware , 2019, ArXiv.

[72]  Rupak Biswas,et al.  Quantum Approximate Optimization with Hard and Soft Constraints , 2017 .

[73]  E. Rieffel,et al.  Power of Pausing: Advancing Understanding of Thermalization in Experimental Quantum Annealers , 2018, Physical Review Applied.

[74]  Nanba Shinobu,et al.  BBU-RRH Switching Schemes for Centralized RAN , 2013 .

[75]  Rupak Biswas,et al.  A NASA perspective on quantum computing: Opportunities and challenges , 2017, Parallel Comput..

[76]  Andrew J. Ochoa,et al.  Best-case performance of quantum annealers on native spin-glass benchmarks: How chaos can affect success probabilities , 2015, 1505.02278.