NON‐SYMMETRICAL CORRESPONDENCE ANALYSIS WITH CONCATENATION AND LINEAR CONSTRAINTS
暂无分享,去创建一个
[1] B. Mirkin. Eleven Ways to Look at the Chi-Squared Coefficient for Contingency Tables , 2001 .
[2] Pieter M. Kroonenberg,et al. Nonsymmetric Correspondence Analysis: A Tool for Analysing Contingency TablesWith a Dependence Structure , 1999 .
[3] Trevor J. Ringrose,et al. Bootstrapping and correspondence analysis in archaeology , 1992 .
[4] Rasmus Bro,et al. Recent developments in CANDECOMP/PARAFAC algorithms: a critical review , 2003 .
[5] B. Margolin,et al. An Analysis of Variance for Categorical Data , 1971 .
[6] Eric J. Beh. Confidence circles for correspondence analysis using orthogonal polynomials , 2001, Adv. Decis. Sci..
[7] L. Tucker,et al. Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.
[8] Richard A. Harshman,et al. Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .
[9] Y. Takane,et al. Principal component analysis with external information on both subjects and variables , 1991 .
[10] Daniel Chessel,et al. Non-symmetric correspondence analysis: an alternative for species occurrences data , 1998, Plant Ecology.
[11] Eric J. Beh,et al. Simple Correspondence Analysis: A Bibliographic Review , 2004 .
[12] L. A. Goodman,et al. Measures of association for cross classifications , 1979 .
[13] Ulf Böckenholt,et al. Canonical analysis of contingency tables with linear constraints , 1990 .
[14] J. Chang,et al. Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .
[15] Trevor J. Ringrose. Alternative confidence regions for canonical variate analysis , 1996 .
[16] J. Landis,et al. Catanova for multidimensional contingency tables: ordinal-scale resfqnse , 1980 .