Probabilistic divide-and-conquer: Deterministic second half

We present a probabilistic divide-and-conquer (PDC) method for \emph{exact} sampling of conditional distributions of the form $\mathcal{L}( {\bf X}\, |\, {\bf X} \in E)$, where ${\bf X}$ is a random variable on $\mathcal{X}$, a complete, separable metric space, and event $E$ with $\mathbb{P}(E) \geq 0$ is assumed to have sufficient regularity such that the conditional distribution exists and is unique up to almost sure equivalence. The PDC approach is to define a decomposition of $\mathcal{X}$ via sets $\mathcal{A}$ and $\mathcal{B}$ such that $\mathcal{X} = \mathcal{A} \times \mathcal{B}$, and sample from each separately. The deterministic second half approach is to select the sets $\mathcal{A}$ and $\mathcal{B}$ such that for each element $a\in \mathcal{A}$, there is only one element $b_a \in \mathcal{B}$ for which $(a,b_a)\in E$. We show how this simple approach provides non-trivial improvements to several conventional random sampling algorithms in combinatorics, and we demonstrate its versatility with applications to sampling from sufficiently regular conditional distributions.

[1]  Gerald B. Folland,et al.  Real Analysis: Modern Techniques and Their Applications , 1984 .

[2]  G. Casella,et al.  Statistical Inference , 2003, Encyclopedia of Social Network Analysis and Mining.

[3]  V. F. Kolchin A problem of the Allocation of Particles in Cells and Cycles of Random Permutations , 1971 .

[4]  W. Ewens The sampling theory of selectively neutral alleles. , 1972, Theoretical population biology.

[5]  Igor Pak,et al.  Hook length formula and geometric combinatorics. , 2001 .

[6]  B. Presnell,et al.  Expect the unexpected from conditional expectation , 1998 .

[7]  Simon Tavare,et al.  Independent Process Approximations for Random Combinatorial Structures , 1994, 1308.3279.

[8]  Olivier Bodini,et al.  Random Sampling of Plane Partitions , 2006, Combinatorics, Probability and Computing.

[9]  Joseph T. Chang,et al.  Conditioning as disintegration , 1997 .

[10]  Alexander Postnikov,et al.  Permutohedra, Associahedra, and Beyond , 2005, math/0507163.

[11]  P. Billingsley,et al.  Convergence of Probability Measures , 1970, The Mathematical Gazette.

[12]  Leslie G. Valiant,et al.  Random Generation of Combinatorial Structures from a Uniform Distribution , 1986, Theor. Comput. Sci..

[13]  R. Arratia,et al.  On the Singularity of Random Bernoulli Matrices— Novel Integer Partitions and Lower Bound Expansions , 2011, 1105.2834.

[14]  Jim Pitman,et al.  The two-parameter generalization of Ewens' random partition structure , 2003 .

[15]  L. A. Shepp,et al.  Ordered cycle lengths in a random permutation , 1966 .

[16]  William Feller,et al.  The fundamental limit theorems in probability , 1945 .

[17]  Luc Devroye,et al.  Chapter 4 Nonuniform Random Variate Generation , 2006, Simulation.

[18]  V. Vu,et al.  Small Ball Probability, Inverse Theorems, and Applications , 2012, 1301.0019.

[19]  Guy Louchard,et al.  Random Sampling from Boltzmann Principles , 2002, ICALP.

[20]  Boris G. Pittel,et al.  Random Set Partitions: Asymptotics of Subset Counts , 1997, J. Comb. Theory, Ser. A.

[21]  Omer Giménez,et al.  A Linear Algorithm for the Random Sampling from Regular Languages , 2010, Algorithmica.

[22]  C. Nicaud,et al.  Random Generation Using Binomial Approximations , 2010 .

[23]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Guy Louchard,et al.  Boltzmann Samplers for the Random Generation of Combinatorial Structures , 2004, Combinatorics, Probability and Computing.

[25]  H. Temperley Statistical mechanics and the partition of numbers II. The form of crystal surfaces , 1952, Mathematical Proceedings of the Cambridge Philosophical Society.

[26]  Herbert S. Wilf,et al.  A Method and Two Algorithms on the Theory of Partitions , 1975, J. Comb. Theory, Ser. A.

[27]  Mark Jerrum,et al.  Approximate Counting, Uniform Generation and Rapidly Mixing Markov Chains , 1987, International Workshop on Graph-Theoretic Concepts in Computer Science.

[28]  R. Arratia,et al.  The Cycle Structure of Random Permutations , 1992 .

[29]  R. Arratia,et al.  Poisson Process Approximations for the Ewens Sampling Formula , 1992 .

[30]  Bert Fristedt,et al.  The structure of random partitions of large integers , 1993 .

[31]  J. Nicolas Sur les entiers $N$ pour lesquels il y a beaucoup de groupes abéliens d’ordre $N$ , 1977 .

[32]  Stephen DeSalvo,et al.  Exact Sampling Algorithms for Latin Squares and Sudoku Matrices via Probabilistic Divide-and-Conquer , 2015, Algorithmica.

[33]  Igor Pak,et al.  Log-concavity of the partition function , 2013, 1310.7982.

[34]  J. Propp,et al.  Exact sampling with coupled Markov chains and applications to statistical mechanics , 1996 .

[35]  P. Erdös On a lemma of Littlewood and Offord , 1945 .

[36]  D. H. Lehmer On the remainders and convergence of the series for the partition function , 1939 .

[37]  Laurent Alonso,et al.  Uniform Generation of a Motzkin Word , 1994, Theor. Comput. Sci..

[38]  R. Arratia,et al.  Logarithmic Combinatorial Structures: A Probabilistic Approach , 2003 .

[39]  Stephen Desalvo Improvements to exact Boltzmann sampling using probabilistic divide-and-conquer and the recursive method , 2017, Electron. Notes Discret. Math..

[40]  P. Diaconis,et al.  Algebraic algorithms for sampling from conditional distributions , 1998 .

[41]  Alain Denise,et al.  Uniform Random Generation of Decomposable Structures Using Floating-Point Arithmetic , 1999, Theor. Comput. Sci..

[42]  R. Durrett Probability: Theory and Examples , 1993 .

[43]  Philippe Duchon Random generation of combinatorial structures: Boltzmann samplers and beyond , 2011, Proceedings of the 2011 Winter Simulation Conference (WSC).

[44]  Hans Rademacher,et al.  On the Partition Function p(n) , 1938 .

[45]  P. Diaconis,et al.  Bounds for Kac's Master Equation , 1999 .

[46]  L. Carlitz,et al.  Asymptotic properties of eulerian numbers , 1972 .

[47]  D. White,et al.  Constructive combinatorics , 1986 .

[48]  Wojciech Szatzschneider,et al.  An Inequality , 1991, SIAM Rev..

[49]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[50]  An alternate development of conditioning , 1979 .

[51]  William Feller,et al.  An introduction to probability and its applications , 2014 .

[52]  G. Hardy,et al.  Asymptotic Formulaæ in Combinatory Analysis , 1918 .

[53]  N. D. Bruijn Asymptotic methods in analysis , 1958 .

[54]  Fredrik Johansson,et al.  Efficient implementation of the Hardy-Ramanujan-Rademacher formula , 2012, 1205.5991.

[55]  Richard Arratia,et al.  Probabilistic Divide-and-Conquer: A New Exact Simulation Method, With Integer Partitions as an Example , 2011, Combinatorics, Probability and Computing.

[56]  S. Mendelson,et al.  A probabilistic approach to the geometry of the ℓᵨⁿ-ball , 2005, math/0503650.

[57]  V. V. Petrov On Local Limit Theorems for Sums of Independent Random Variables , 1964 .