Intrinsic SiC/SiO2 Interface States

The energy distribution of electron states at SiC/SiO 2 interfaces produced by oxidation of various (3C, 4H, 6H) SiC polytypes is studied by electrical analysis techniques and internal photoemission spectroscopy. A similar distribution of interface traps over the SiC bandgap is observed for different polytypes indicating a common nature of interfacial defects. Carbon clusters at the SiC/SiO 2 interface and near-interfacial defects in the SiO 2 are proposed to be responsible for the dominant portion of interface traps, while contributions caused by dopant-related defects and dangling bonds at the SiC surface are not observed.

[1]  Andersson,et al.  Electron states and microstructure of thin a-C:H layers. , 1996, Physical review. B, Condensed matter.

[2]  Andre Stesmans,et al.  Hole traps in oxide layers thermally grown on SiC , 1996 .

[3]  James H. Stathis,et al.  Conductance measurements on Pb centers at the (111) Si:SiO2 interface , 1996 .

[4]  P. Friedrichs,et al.  INTERFACE PROPERTIES OF METAL-OXIDE-SEMICONDUCTOR STRUCTURES ON N-TYPE 6H AND 4H-SIC , 1996 .

[5]  Krüger,et al.  First-principles calculations of beta -SiC(001) surfaces. , 1996, Physical review. B, Condensed matter.

[6]  Andre Stesmans,et al.  Elimination of SiC/SiO2 interface states by preoxidation ultraviolet‐ozone cleaning , 1996 .

[7]  Max J. Schulz,et al.  Band offsets and electronic structure of SiC/SiO2 interfaces , 1996 .

[8]  Michael R. Melloch,et al.  Effect of substrate orientation and crystal anisotropy on the thermally oxidized SiO2/SiC interface , 1996 .

[9]  M. Nicolet,et al.  Oxidation of GeSi , 1995 .

[10]  T. Ouisse,et al.  Electrical and physico-chemical characterizations of the SiO2/SiC interface , 1995 .

[11]  J. Robertson Structural models of a-C and a-C:H , 1995 .

[12]  Michael R. Melloch,et al.  Characterization and optimization of the SiO2/SiC metal-oxide semiconductor interface , 1995 .

[13]  Frauenheim,et al.  Molecular-dynamics subplantation studies of carbon beneath the diamond (111) surface. , 1995, Physical review. B, Condensed matter.

[14]  B. J. Baliga,et al.  Electrical properties of thermal oxide grown using dry oxidation on p‐type 6H‐silicon carbide , 1994 .

[15]  P. Friedrichs,et al.  Dielectric strength of thermal oxides on 6H‐SiC and 4H‐SiC , 1994 .

[16]  H. Morkoç,et al.  Large‐band‐gap SiC, III‐V nitride, and II‐VI ZnSe‐based semiconductor device technologies , 1994 .

[17]  G. Guillot,et al.  Electrical characterization of instabilities in 6H silicon carbide metal‐oxide‐semiconductor capacitors , 1994 .

[18]  H. Mitlehner,et al.  SiC devices: physics and numerical simulation , 1994 .

[19]  D. Alok,et al.  Electrical properties of thermal oxide grown on n‐type 6H‐silicon carbide , 1994 .

[20]  Lee,et al.  Electronic structure of dense amorphous carbon. , 1994, Physical review. B, Condensed matter.

[21]  J. Palmour,et al.  SiC MOS interface characteristics , 1994 .

[22]  M. Östling,et al.  Formation and characterization of cobalt 6H‐silicon carbide Schottky contacts , 1993 .

[23]  M. Schmidt,et al.  Hole trap analysis in SiO2/Si structures by electron tunneling , 1992 .

[24]  H. Okumura,et al.  Effects of gamma‐ray irradiation on cubic silicon carbide metal‐oxide‐semiconductor structure , 1991 .

[25]  M. I. Chaudhry Electrical properties of β‐SiC metal‐oxide‐semiconductor structures , 1991 .

[26]  M. Yamanaka,et al.  C-V Characteristics of MOS Structures Fabricated of Al-Doped p-Type 3C-SiC Epilayers Grown on Si by Chemical Vapor Deposition , 1991 .

[27]  H. Massoud,et al.  An investigation of Si‐SiO2 interface charges in thermally oxidized (100), (110), (111), and (511) silicon , 1990 .

[28]  Brower Dissociation kinetics of hydrogen-passivated (111) Si-SiO2 interface defects. , 1990, Physical review. B, Condensed matter.

[29]  A. Boothroyd,et al.  Rechargeable E’ centers in silicon‐implanted SiO2 films , 1990 .

[30]  Scofield,et al.  Evidence that similar point defects cause 1/f noise and radiation-induced-hole trapping in metal-oxide-semiconductor transistors. , 1990, Physical review letters.

[31]  Fowler Wb,et al.  Oxygen vacancy and the E1' center in crystalline SiO2. , 1987 .

[32]  Robertson,et al.  Electronic and atomic structure of amorphous carbon. , 1987, Physical review. B, Condensed matter.

[33]  W. J. Choyke,et al.  Comparative electron spectroscopic studies of surface segregation on SiC(0001) and SiC(0001̄) , 1986 .

[34]  C. Fung,et al.  Behavior of inversion layers in 3C silicon carbide , 1986 .

[35]  N. Johnson,et al.  Interface traps and Pb centers in oxidized (100) silicon wafers , 1986 .

[36]  A. Hartstein,et al.  Effect of silicon orientation and hydrogen anneal on tunneling from Si into SiO2 , 1983 .

[37]  Bruce E. Deal,et al.  ESR centers, interface states, and oxide fixed charge in thermally oxidized silicon wafers , 1979 .

[38]  W. Mönch,et al.  Electronic properties of cesium on 6H‐SiC surfaces , 1996 .

[39]  C. Zetterling,et al.  Thermal oxidation of n- and p-type 6H-silicon carbide , 1994 .

[40]  P. Fiorini,et al.  DISTRIBUTION OF OCCUPIED STATES IN A-C-H AND A-SI1-XCX-H ALLOYS AS DETERMINED BY TOTAL YIELD SPECTROSCOPY , 1991 .

[41]  L. Matus,et al.  High Frequency Capacitance‐Voltage Characteristics of Thermally Grown SiO2 Films on β ‐ SiC , 1990 .