NO2 radical spectroscopy: Vibrational frequencies, dipole moment, and the energy difference between the bent and linear stationary points on the ground state potential surface

[1]  G. Scuseria,et al.  A systematic theoretical study of harmonic vibrational frequencies: The single and double excitation coupled cluster (CCSD) method , 1988 .

[2]  H. Schaefer,et al.  The effects of triple and quadruple excitations in configuration interaction procedures for the quantum mechanical prediction of molecular properties , 1988 .

[3]  H. Schaefer,et al.  The analytic configuration interaction gradient method: Application to the cyclic and open isomers of the S3 molecule , 1986 .

[4]  A. D. McLean,et al.  Symmetry breaking in molecular calculations and the reliable prediction of equilibrium geometries. The formyloxyl radical as an example , 1985 .

[5]  R. Buenker,et al.  Abinitio MRD-CI study of NO2. 1. Multi-dimensional potential surfaces for the two lowest 2A′ states , 1985 .

[6]  P. Knowles,et al.  A second order multiconfiguration SCF procedure with optimum convergence , 1985 .

[7]  P. Knowles,et al.  An efficient second-order MC SCF method for long configuration expansions , 1985 .

[8]  Michael J. Frisch,et al.  Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets , 1984 .

[9]  Henry F. Schaefer,et al.  The shape‐driven graphical unitary group approach to the electron correlation problem. Application to the ethylene molecule , 1982 .

[10]  H. Schaefer,et al.  Analytic second derivatives in restricted Hartree–Fock theory. A method for high‐spin open‐shell molecular wave functions , 1982 .

[11]  H. Schaefer,et al.  Unified theoretical treatment of analytic first and second energy derivatives in open-shell Hartree—Fock theory , 1982 .

[12]  H. Schaefer,et al.  Generalization of analytic configuration interaction (CI) gradient techniques for potential energy hypersurfaces, including a solution to the coupled perturbed Hartree–Fock equations for multiconfiguration SCF molecular wave functions , 1982 .

[13]  Henry F. Schaefer,et al.  Gradient techniques for open‐shell restricted Hartree–Fock and multiconfiguration self‐consistent‐field methods , 1979 .

[14]  Ernest R. Davidson,et al.  The two lowest energy 2A′ states of NO2 , 1976 .

[15]  R. P. Hosteny,et al.  The electronic structure of nitrogen dioxide. I. Multiconfiguration self‐consistent‐field calculation of the low‐lying electronic states , 1975 .

[16]  J. Brand,et al.  The 2B1 ← 2A1 system of nitrogen dioxide☆ , 1973 .

[17]  Henry F. Schaefer,et al.  Electronic Splitting between the 2B1 and 2A1 States of the NH2 Radical , 1971 .

[18]  T. H. Dunning Gaussian Basis Functions for Use in Molecular Calculations. III. Contraction of (10s6p) Atomic Basis Sets for the First‐Row Atoms , 1970 .

[19]  H. Schaefer,et al.  Metastability of the 1 D State of the Nitrogen Negative Ion , 1968 .

[20]  O. Sǐnanoğlu,et al.  Many‐Electron Theory of Nonclosed‐Shell Atoms and Molecules. I. Orbital Wavefunction and Perturbation Theory , 1966 .

[21]  R. Curl,et al.  DIPOLE MOMENT OF NITROGEN DIOXIDE1a , 1963 .

[22]  J. Brand,et al.  Anharmonic potential constants and the large amplitude bending vibration in nitrogen dioxide , 1976 .

[23]  A. Bunge,et al.  Electronic Wavefunctions for Atoms. III. Partition of Degenerate Spaces and Ground State of C , 1970 .