Joint determination of 40K decay constants and 40Ar∗/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology

[1]  J. Mattinson Analysis of the relative decay constants of 235U and 238U by multi-step CA-TIMS measurements of closed-system natural zircon samples , 2010 .

[2]  A. Carroll,et al.  Eocene clocks agree: Coeval 40Ar/39Ar, U-Pb, and astronomical ages from the Green River Formation , 2010 .

[3]  L. Tanner,et al.  40Ar/39Ar ages of CAMP in North America: Implications for the Triassic–Jurassic boundary and the 40K decay constant bias , 2009 .

[4]  P. Renne,et al.  High-precision 40Ar/39Ar age for the Jehol Biota , 2008 .

[5]  P. Renne,et al.  Synchronizing Rock Clocks of Earth History , 2008, Science.

[6]  P. Renne,et al.  Implications of pre-eruptive magmatic histories of zircons for U–Pb geochronology of silicic extrusions , 2008 .

[7]  S. Bowring,et al.  U-Pb dating of zircon in the Bishop Tuff at the millennial scale , 2007 .

[8]  P. Renne,et al.  U-Pb and 40Ar/39Ar dating of the Miocene fossil track site at Ipolytarnóc (Hungary) and its implications , 2007 .

[9]  R. Mundil,et al.  40Ar/39Ar and U–Pb dating of the Fish Canyon magmatic system, San Juan Volcanic field, Colorado: Evidence for an extended crystallization history , 2007 .

[10]  P. Renne,et al.  Age calibration of the Fish Canyon sanidine 40Ar/39Ar dating standard using primary K–Ar standards , 2006 .

[11]  S. Bowring,et al.  Reassessing the uranium decay constants for geochronology using ID-TIMS U–Pb data , 2006 .

[12]  J. Mattinson Zircon U–Pb chemical abrasion (“CA-TIMS”) method: Combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages , 2005 .

[13]  M. Reid,et al.  The pace of rhyolite differentiation and storage in an 'archetypical' silicic magma system, Long Valley, California [rapid communication] , 2005 .

[14]  P. Renne,et al.  Alder Creek sanidine (ACs-2): A Quaternary 40Ar/39Ar dating standard tied to the Cobb Mountain geomagnetic event , 2005 .

[15]  J. Lowenstern,et al.  Late Pleistocene granodiorite source for recycled zircon and phenocrysts in rhyodacite lava at Crater Lake, Oregon [rapid communication] , 2005 .

[16]  P. Renne,et al.  Age and Timing of the Permian Mass Extinctions: U/Pb Dating of Closed-System Zircons , 2004, Science.

[17]  B. Flower,et al.  The Matuyama-Brunhes boundary interval (500-900 ka) in North Atlantic drift sediments , 2004 .

[18]  Xixi Zhao,et al.  Matuyama-Brunhes reversal and Kamikatsura event on Maui: paleomagnetic directions, 40 Ar/ 39 Ar ages and implications , 2004 .

[19]  R. Korsch,et al.  of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards , 2004 .

[20]  W. Kutschera,et al.  A critical review of experimental data for the half-lives of the uranium isotopes 238U and 235U. , 2004, Applied Radiation and Isotopes.

[21]  K Kossert,et al.  LSC measurements of the half-life of 40K. , 2004, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[22]  M. Villeneuve,et al.  An intercalibration study of the Fish Canyon sanidine and biotite 40Ar/39Ar standards and some comments on the age of the Fish Canyon Tuff , 2003 .

[23]  T. Spell,et al.  Characterization and calibration of 40Ar/39Ar dating standards , 2003 .

[24]  M. Raymo,et al.  Geomagnetic excursions and paleointensities in the Matuyama Chron at Ocean Drilling Program Sites 983 and 984 (Iceland Basin) , 2002 .

[25]  P. Bickel,et al.  Statistical Methods for Jointly Estimating the Decay Constant of 40K and the Age of a Dating Standard , 2002 .

[26]  P. Renne,et al.  40Ar/39Ar dating of Late Permian evaporites, southeastern New Mexico, USA , 2001 .

[27]  R. McDonald,et al.  Influence of physical and chemical environments on the decay rates of 7Be and 40K , 2001 .

[28]  S. Bowring,et al.  U-Pb zircon and titanite systematics of the Fish Canyon Tuff: an assessment of high-precision U-Pb geochronology and its application to young volcanic rocks , 2001 .

[29]  M. Lanphere,et al.  Precise K–Ar, 40Ar/39Ar, Rb–Sr and U/Pb mineral ages from the 27.5 Ma Fish Canyon Tuff reference standard , 2001 .

[30]  P. Renne,et al.  Timing of the Permian–Triassic biotic crisis: implications from new zircon U/Pb age data (and their limitations) , 2001 .

[31]  P. Renne,et al.  40Ar/39Ar dating of Ordovician K-bentonites in Laurentia and Baltoscandia , 2001 .

[32]  M. Villeneuve,et al.  A method for intercalibration of U-Th-Pb and 40Ar-39Ar ages in the Phanerozoic , 2000 .

[33]  J. Wijbrans,et al.  New 40Ar/39Ar age of the Bishop Tuff from multiple sites and sediment rate calibration for the Matuyama-Brunhes boundary , 2000 .

[34]  K. Ludwig Decay constant errors in U–Pb concordia-intercept ages , 2000 .

[35]  Xing Xu,et al.  Cretaceous age for the feathered dinosaurs of Liaoning, China , 1999, Nature.

[36]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[37]  P. Renne,et al.  Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating , 1998 .

[38]  K. Ludwig On the Treatment of Concordant Uranium-Lead Ages , 1998 .

[39]  Warren D. Sharp,et al.  40Ar/39Ar Dating into the Historical Realm: Calibration Against Pliny the Younger , 1997 .

[40]  W. Krijgsman,et al.  Direct comparison of astronomical and 40Ar/39Ar ages of ash beds: Potential implications for the age of mineral dating standards , 1997 .

[41]  J. Michaux,et al.  The MN3 fossil mammal-bearing locality of Beaulieu (France): Biochronology, Radiometric dating, and lower age limit of the Early Neogene renewal of the mammalian fauna in Europe , 1996 .

[42]  E. Farrar,et al.  Intercalibration of 40Ar39Ar dating standards , 1996 .

[43]  Michael T. Black,et al.  Synchrony and Causal Relations Between Permian-Triassic Boundary Crises and Siberian Flood Volcanism , 1995, Science.

[44]  S. Cande,et al.  Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic , 1995 .

[45]  R. Walter,et al.  Intercalibration of astronomical and radioisotopic time , 1994 .

[46]  C. Swisher,et al.  40Ar/39Ar dating and magnetostratigraphic correlation of the terrestrial Cretaceous–Paleogene boundary and Puercan Mammal Age, Hell Creek – Tullock formations, eastern Montana , 1993 .

[47]  P. Endt,et al.  Energy levels of A = 21−44 nuclei (V) , 1990 .

[48]  J. Mattinson UPb ages of zircons: A basic examination of error propagation , 1987 .

[49]  A. Hurford,et al.  40Ar39Ar and K/Ar dating of the bishop and fish canyon tuffs: Calibration ages for fission-track dating standards , 1985 .

[50]  J. Minster,et al.  Absolute age of formation of chondrites studied by the 87Rb–87Sr method , 1982, Nature.

[51]  P. Patchett,et al.  Lu–Hf total-rock isochron for the eucrite meteorites , 1980, Nature.

[52]  J. Luck,et al.  187Re–187Os systematics in meteorites: early chronology of the Solar System and age of the Galaxy , 1980, Nature.

[53]  M. Bukowinski Theoretical estimate of compressional changes of decay constant of 40K , 1979 .

[54]  R. Steiger,et al.  Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology , 1977 .

[55]  T. J. Murphy,et al.  Absolute Isotopic Abundance Ratio and the Atomic Weight of a Reference Sample of Copper. , 1975, Journal of Research of the National Bureau of Standards Section A Physics and Chemistry.

[56]  Martin H. Dodson,et al.  Closure temperature in cooling geochronological and petrological systems , 1973 .

[57]  N. Gale,et al.  A reappraisal of the decay constants and branching ratio of 40K , 1969 .

[58]  E. Irving Paleomagnetism of some carboniferous rocks from New South Wales and its relation to geological events , 1966 .

[59]  W. Compston,et al.  The statistical assessment of Rb‐Sr isochrons , 1966 .

[60]  G. Wasserburg,et al.  Decay Constants of K40 as Determined by the Radiogenic Argon Content of Potassium Minerals , 1956 .

[61]  P. Renne,et al.  The Triassic timescale: new constraints and a review of geochronological data , 2010 .

[62]  S. Lucas The Triassic Timescale , 2010 .

[63]  James G. Ogg,et al.  A Geologic Time Scale 2004: CONCEPTS AND METHODS , 2004 .

[64]  A. G. Malonda,et al.  Half-life determination of 40K by LSC. , 2002 .

[65]  P. Renne,et al.  Call for an improved set of decay constants for geochronological use , 2001 .

[66]  G. B. Dalrymple,et al.  First-principles calibration of 38Ar tracers :implications for the ages of 40Ar/39Ar fluence monitors , 2000 .

[67]  P. Renne,et al.  A test for systematic errors in 40Ar/39Ar geochronology through comparison with U/Pb analysis of a 1.1-Ga rhyolite , 2000 .

[68]  P. Renne 40Ar/39Ar Dating of the 79 AD Eruption of Vesuvius: An ab initio Basis for Improved Accuracy in 40Ar/39Ar Geochronology , 1998 .

[69]  W. Compston,et al.  Two Carboniferous Ages: A Comparison of Shrimp Zircon Dating with Conventional Zircon Ages and 40Ar/39Ar Analysis , 1995 .

[70]  W. B. Harland,et al.  A Geologic time scale , 1982 .

[71]  J. Sutter,et al.  Interpretation of discordant 40Ar/39Ar age-spectra of mesozoic tholeiites from antarctica , 1977 .

[72]  A. H. Jaffey,et al.  Precision Measurement of Half-Lives and Specific Activities of U-235 and U238 , 1971 .

[73]  Gene Simmons,et al.  Thermal conductivity of rock-forming minerals☆ , 1969 .