Statistical consequences of applying a PCA noise filter on EELS spectrum images.

Principal component analysis (PCA) noise filtering is a popular method to remove noise from experimental electron energy loss (EELS) spectrum images. Here, we investigate the statistical behaviour of this method by applying it on a simulated data set with realistic noise levels. This phantom data set provides access to the true values contained in the data set as well as to many different realizations of the noise. Using least squares fitting and parameter estimation theory, we demonstrate that even though the precision on the estimated parameters can be better as the Cramér-Rao lower bound, a significant bias is introduced which can alter the conclusions drawn from experimental data sets. The origin of this bias is in the incorrect retrieval of the principal loadings for noisy data. Using an expression for the bias and precision of the singular values from literature, we present an evaluation criterion for these singular values based on the noise level and the amount of information present in the data set. This criterion can help to judge when to avoid PCA noise filtering in practical situations. Further we show that constructing elemental maps of PCA noise filtered data using the background subtraction method, does not guarantee an increase in the signal to noise ratio due to correlation of the spectral data as a result of the filtering process.

[1]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[2]  D. Muller Structure and bonding at the atomic scale by scanning transmission electron microscopy. , 2009, Nature materials.

[3]  Edmund R. Malinowski,et al.  Factor Analysis in Chemistry , 1980 .

[4]  L. Fitting Kourkoutis,et al.  Atomic-Scale Chemical Imaging of Composition and Bonding by Aberration-Corrected Microscopy , 2008, Science.

[5]  David B. Williams,et al.  Quantitative characterization of nanoprecipitates in irradiated low-alloy steels: advances in the application of FEG-STEM quantitative microanalysis to real materials , 2006 .

[6]  Noël Bonnet,et al.  Extracting information from sequences of spatially resolved EELS spectra using multivariate statistical analysis , 1999 .

[7]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[8]  Gianluigi A. Botton,et al.  Probing bonding and electronic structure at atomic resolution with spectroscopic imaging , 2012 .

[9]  Boris E. Burakov,et al.  Advanced Materials , 2019, Springer Proceedings in Physics.

[10]  Michael R. Keenan,et al.  Accounting for Poisson noise in the multivariate analysis of ToF‐SIMS spectrum images , 2004 .

[11]  Hidetaka Sawada,et al.  Atomic Resolution Elemental Map of EELS with a Cs Corrected STEM , 2006, Microscopy and Microanalysis.

[12]  Masashi Watanabe,et al.  Atomic-resolution imaging of oxidation states in manganites , 2009 .

[13]  Christian Colliex,et al.  From electron energy-loss spectroscopy to multi-dimensional and multi-signal electron microscopy. , 2011, Journal of electron microscopy.

[14]  J Verbeeck,et al.  Model based quantification of EELS spectra. , 2004, Ultramicroscopy.

[15]  October I Physical Review Letters , 2022 .

[16]  R. Nicholls,et al.  Achieving sub-nanometre particle mapping with energy-filtered TEM. , 2009, Ultramicroscopy.

[17]  O. L. Krivanek,et al.  Sub-ångstrom resolution using aberration corrected electron optics , 2002, Nature.

[18]  Peter Abbamonte,et al.  Probing Interfacial Electronic Structures in Atomic Layer LaMnO3 and SrTiO3 Superlattices , 2010, Advanced materials.

[19]  Paul Cueva,et al.  Data Processing for Atomic Resolution Electron Energy Loss Spectroscopy , 2012, Microscopy and Microanalysis.

[20]  N Bonnet,et al.  EELS elemental mapping with unconventional methods. I. Theoretical basis: image analysis with multivariate statistics and entropy concepts. , 1990, Ultramicroscopy.

[21]  Michael D. Morris,et al.  Estimating the number of pure chemical components in a mixture by maximum likelihood , 2007 .

[22]  J Verbeeck,et al.  Deconvolution of core electron energy loss spectra. , 2009, Ultramicroscopy.

[23]  Maria Varela,et al.  “Charge Leakage” at LaMnO3/SrTiO3 Interfaces , 2010, Advanced materials.

[24]  P D Nellist,et al.  Spectroscopic imaging of single atoms within a bulk solid. , 2004, Physical review letters.

[25]  B. Roy Frieden,et al.  Science from Fisher Information: A Unification , 2004 .

[26]  S. Pennycook,et al.  Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy , 2010, Nature.

[27]  Mark P. Oxley,et al.  Seeing oxygen disorder in YSZ/SrTiO3 colossal ionic conductor heterostructures using EELS , 2011 .

[28]  A. Saiani,et al.  Microscopy and Microanalysis , 2017, Microscopy Today.

[29]  Gianluigi A. Botton,et al.  Elemental mapping at the atomic scale using low accelerating voltages , 2010 .

[30]  R. Egerton Electron Energy-Loss Spectroscopy in the Electron Microscope , 1995, Springer US.

[31]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[32]  Paul Geladi,et al.  Random error bias in principal component analysis. Part I. derivation of theoretical predictions , 1995 .

[33]  Matthew J. Rosseinsky,et al.  Physical Review B , 2011 .

[34]  G A Botton,et al.  Quantitative statistical analysis, optimization and noise reduction of atomic resolved electron energy loss spectrum images. , 2012, Micron.

[35]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[36]  S D Findlay,et al.  Two-dimensional mapping of chemical information at atomic resolution. , 2007, Physical review letters.

[37]  K. Suenaga,et al.  Atom-by-atom spectroscopy at graphene edge , 2010, Nature.

[39]  Ray F. Egerton,et al.  Electron Energy-Loss Spectroscopy , 1997, Microscopy and Microanalysis.