The identification of candidate transitions for optically pumped far infrared lasers: Methyl halides and D 2 O

Two hundred and forty-four candidate transitions for optically pumped far infrared lasers have been identified in C12H 3 F, C13H 3 F, C12D 3 F, C12H 3 Cl35, C12H 3 Cl37, C12H 3 Br79, C12H 3 Br81, and D 2 O using as candidate pump lines, 781 in number, the isotopic forms of CO 2 , the sequence and hot bands of C12O 2 16, and the N 2 O bands. The dominant transition parameters responsible for strong emission from TEA, CW, and long pulse modes of operation were identified by a correlation between known experimental behavior and the pertinent transition parameters, the results being that strong TEA laser emission correlates with ground state population while strong CW and long pulse emission correlate with absorption coefficient. The candidate transitions were subsequently selected on the basis of these parameters using calculated transitions and assignments based on band data from high resolution laser-Stark spectroscopy and measured candidate pump frequencies.

[1]  K. Kawaguchi,et al.  CO2 and N2O laser Stark spectroscopy of the ν6 band of methyl bromide , 1978 .

[2]  E. Arimondo,et al.  Radio-frequency spectroscopy inside a laser cavity; "pure" nuclear quadrupole resonance of gaseous C H 3 I , 1978 .

[3]  W. A. Riessler,et al.  Heterodyne measurements of infrared absorption frequencies of D2O. , 1978, Optics Letters.

[4]  K. Siemsen,et al.  Heterodyne frequency measurements of CO2 laser hot-band transitions , 1977 .

[5]  J. H. Shaw,et al.  Measurement and analysis of the ?2 band of D216O , 1977 .

[6]  G. Duxbury,et al.  Stark spectroscopy with the CO2 laser , 1977 .

[7]  K. Siemens,et al.  Heterodyne frequency measurements of CO2 laser sequence-band transitions , 1977 .

[8]  H. Yoshinaga,et al.  CW efficient optically-pumped far-infrared waveguide NH3 lasers , 1977 .

[9]  R. Temkin Theory of optically pumped submillimeter lasers , 1977 .

[10]  F. Brown,et al.  A high-power, narrow-linewidth, linearly pumped CH3F oscillator-amplifier system , 1977, IEEE Journal of Quantum Electronics.

[11]  D. Hodges,et al.  High-power operation and scaling behavior of CW optically pumped FIR waveguide lasers , 1977 .

[12]  R. Illingworth,et al.  Tunable single-mode optical pumping of the D2O FIR laser , 1977 .

[13]  T. Detemple,et al.  Stimulated Raman Emission in Infrared Excited Gases , 1976, 1976 International Conference on Submillimeter Waves and Their Applications.

[14]  K J Button,et al.  Submillimeter laser wavelength tables. , 1976, Applied optics.

[15]  C. Weiss Pump saturation in molecular far-infrared lasers , 1976 .

[16]  J. Deroche,et al.  Rotational analysis of CH3Br v 6 perpendicular band through far infra-red laser lines , 1976 .

[17]  W. Peebles,et al.  Far-infrared super-radiant laser action in heavy water , 1976 .

[18]  J. W. Fleming,et al.  Far-infrared absorption spectra of water vapor H216O and isotopic modifications , 1976 .

[19]  G. Duxbury,et al.  Stark spectroscopy with the CO2 laser: The ν3 band of CD3F , 1976 .

[20]  R. Temkin,et al.  A high power, 1.22 mm 13C H3 laser , 1976 .

[21]  Masanobu Yamanaka,et al.  Optically Pumped Gas Lasers , 1976 .

[22]  R. Temkin,et al.  Rate equations for an optically-pumped, far infrared laser , 1976 .

[23]  G. Graner Assignment of submillimeter laser lines in CH3I , 1975 .

[24]  K. Siemsen,et al.  Absolute frequency measurements of N2O laser transitions , 1975 .

[25]  E. Hirota,et al.  Microwave spectrum of methyl fluoride in excited vibrational states: Coriolis interaction and anomalous l-doubling transitions , 1975 .

[26]  R. Meyer,et al.  Methanol and deuterated species: Infrared data, valence force field, rotamers, and conformation , 1974 .

[27]  G. Duxbury,et al.  Laser Stark spectroscopy in the 10 μm region: The ν3 bands of CH3F , 1974 .

[28]  T. Chang,et al.  Millimeter and Submillimeter Wave Laser Action in Symmetric Top Molecules Optically Pumped via Parallel Absorption Bands , 1971 .

[29]  T. Bridges,et al.  Laser action at 452, 496, and 541 μm in optically pumped CH3F , 1970 .

[30]  L. Gribov,et al.  INTENSITIES IN THE INFRA-RED ABSORPTION SPECTRA OF POLYATOMIC MOLECULES , 1962 .

[31]  Jean-Claude Derochf Assignment of submillimeter laser lines in methyl chloride , 1978 .

[32]  R. Temkin,et al.  Two-Photon Transitions in Optical y Pumped Submillimeter Lasers , 1978 .

[33]  B. L. Bean,et al.  Tabulation of optically pumped far infrared laser lines and applications to atmospheric transmission , 1977 .

[34]  T. Detemple,et al.  Continuous-Wave CH,F Wavegui e Laser at 496 pm: Theory and Experiment , 1976 .

[35]  T. Chang,et al.  Millimeter and submillimeter-wave laser action in symmetric top molecules optically pumped via perpendicular absorption bands , 1976 .

[36]  D. Spears,et al.  Precision Heterodyne Calibration , 1974 .

[37]  D. G. McDonald,et al.  Accurate Rotational Constants, Frequencies, and Wavelengths from 12C16O2 Lasers Stabilized by Saturated Absorption , 1974 .

[38]  J. Bellet,et al.  Application of Watson's centrifugal distortion theory to water and light asymmetric tops. General methods. Analysis of the ground state and the ν2 state of D2O16 , 1973 .