Learning two-tape automata from queries and counterexamples

We investigate the learning problem of two-tape deterministic finite automata (2-tape DFAs) from queries and counterexamples. Instead of accepting a subset of ∑*, a 2-tape DFA over an alphabet ∑ accepts a subset of ∑* × ∑*, and therefore, it can specify a binary relation on ∑*. In [3] Angluin showed that the class of deterministic finite automata (DFAs) is learnable in polynomial time from membership queries and equivalence queries, namely, from a minimally adequate teacher (MAT).

[1]  Yuji Takada Grammatical Interface for Even Linear Languages Based on Control Sets , 1988, Inf. Process. Lett..

[2]  Takashi Yokomori,et al.  Learning non-deterministic finite automata from queries and counterexamples , 1994, Machine Intelligence 13.

[3]  Takashi Yokomori,et al.  Polynomial-time MAT Learning of C-Deterministic Context-free Grammars , 1993 .

[4]  Wilfried Brauer,et al.  Non-Deterministic Two-Tape Automata are More Powerful Then Deterministic Ones , 1985, STACS.

[5]  Jorge E. Mezei,et al.  On Relations Defined by Generalized Finite Automata , 1965, IBM J. Res. Dev..

[6]  Michael A. Harrison,et al.  Introduction to formal language theory , 1978 .

[7]  C. C. Elgot,et al.  Sets recognized by n-tape automata , 1969 .

[8]  Dana Angluin,et al.  Learning Regular Sets from Queries and Counterexamples , 1987, Inf. Comput..

[9]  Jim Gray,et al.  The Theory of Sequential Relations , 1966, Inf. Control..

[10]  Seymour Ginsburg,et al.  Algebraic and Automata Theoretic Properties of Formal Languages , 1975 .

[11]  Ehud Shapiro,et al.  Inductive Inference of Theories from Facts , 1991, Computational Logic - Essays in Honor of Alan Robinson.

[12]  Dana S. Scott,et al.  Finite Automata and Their Decision Problems , 1959, IBM J. Res. Dev..

[13]  Dana Angluin,et al.  When won't membership queries help? , 1991, STOC '91.

[14]  Piotr Berman,et al.  Learning one-counter languages in polynomial time , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[15]  JOHN F. Young Machine Intelligence , 1971, Nature.

[16]  G. R. Putzolu,et al.  Generalizations of Regular Events , 1965, Inf. Control..

[17]  Samuel Eilenberg,et al.  Review of "Algebraic and automata-theoretic properties of formal languages" by Seymour Ginsburg. North Holland, 1975. , 1976, SIGA.

[18]  Ronald L. Rivest,et al.  Learning Binary Relations and Total Orders , 1993, SIAM J. Comput..

[19]  Arnold L. Rosenberg,et al.  A Machine Realization of the Linear Context-Free Languages , 1967, Inf. Control..