Systematic Computer Assisted Proofs of periodic orbits of Hamiltonian systems

Abstract The numerical study of Dynamical Systems leads to obtain invariant objects of the systems such as periodic orbits, invariant tori, attractors and so on, that helps to the global understanding of the problem. In this paper we focus on the rigorous computation of periodic orbits and their distribution on the phase space, which configures the so called skeleton of the system. We use Computer Assisted Proof techniques to make a rigorous proof of the existence and the stability of families of periodic orbits in two-degrees of freedom Hamiltonian systems, which provide rigorous skeletons of periodic orbits. To that goal we show how to prove the existence and stability of a huge set of discrete initial conditions of periodic orbits, and later, how to prove the existence and stability of continuous families of periodic orbits. We illustrate the approach with two paradigmatic problems: the Henon–Heiles Hamiltonian and the Diamagnetic Kepler problem.

[1]  Roberto Barrio,et al.  Fractal structures in the Hénon-Heiles Hamiltonian , 2008 .

[2]  Auerbach,et al.  Exploring chaotic motion through periodic orbits. , 1987, Physical review letters.

[3]  Localization of periodic orbits of polynomial systems by ellipsoidal estimates , 2005 .

[4]  Roberto Barrio,et al.  A three-parametric study of the Lorenz model , 2007 .

[5]  Alan R. Champneys,et al.  A Newton-Picard shooting method for computing periodic solutions of large-scale dynamical systems , 1995 .

[6]  Nedialko S. Nedialkov,et al.  Validated solutions of initial value problems for ordinary differential equations , 1999, Appl. Math. Comput..

[7]  Michael N. Vrahatis,et al.  Application of the Characteristic Bisection Method for locating and computing periodic orbits in molecular systems , 2001 .

[8]  M. Baranger,et al.  The calculation of periodic trajectories , 1988 .

[9]  Kenneth R. Meyer,et al.  Introduction to Hamiltonian Dynamical Systems and the N-Body Problem , 1991 .

[10]  Y C Lai,et al.  Efficient algorithm for detecting unstable periodic orbits in chaotic systems. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[11]  Peter Schmelcher,et al.  GENERAL APPROACH TO THE LOCALIZATION OF UNSTABLE PERIODIC ORBITS IN CHAOTIC DYNAMICAL SYSTEMS , 1998 .

[12]  Divakar Viswanath,et al.  The Lindstedt-Poincaré Technique as an Algorithm for Computing Periodic Orbits , 2001, SIAM Rev..

[13]  Predicting orbits of the Lorenz equation from symbolic dynamics , 1997 .

[14]  Warwick Tucker,et al.  Validated Numerics: A Short Introduction to Rigorous Computations , 2011 .

[15]  M. Baranger,et al.  Calculations of periodic trajectories for the Henon-Heiles Hamiltonian using the monodromy method. , 1992, Chaos.

[16]  Stavros C. Farantos POMULT: A program for computing periodic orbits in hamiltonian systems based on multiple shooting algorithms , 1998 .

[17]  M. Tadi On computing periodic orbits , 2005 .

[18]  Roberto Barrio,et al.  Bifurcations and safe regions in open Hamiltonians , 2009 .

[19]  Daniel Wilczak,et al.  Period Doubling in the Rössler System—A Computer Assisted Proof , 2007, Found. Comput. Math..

[20]  A. Neumaier Interval methods for systems of equations , 1990 .

[21]  R. Baker Kearfott,et al.  Introduction to Interval Analysis , 2009 .

[22]  M. Hénon,et al.  The applicability of the third integral of motion: Some numerical experiments , 1964 .

[23]  Konstantin E. Starkov,et al.  Localization of periodic orbits of polynomial vector fields of even degree by linear functions , 2005 .

[24]  Claudia Wulff,et al.  Numerical Continuation of Symmetric Periodic Orbits , 2006, SIAM J. Appl. Dyn. Syst..

[25]  Richard P. Brent,et al.  An Algorithm with Guaranteed Convergence for Finding a Zero of a Function , 1971, Comput. J..

[26]  Zbigniew Galias,et al.  Abundance of homoclinic and heteroclinic orbits and rigorous bounds for the topological entropy for the Hénon map , 2001 .

[27]  Erik M. Bollt,et al.  Convergence analysis of Davidchack and Lai's algorithm for finding periodic orbits , 2001 .

[28]  Biham,et al.  Theory and applications of the systematic detection of unstable periodic orbits in dynamical systems , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[29]  M. Powell,et al.  Approximation theory and methods , 1984 .

[30]  W. Tucker The Lorenz attractor exists , 1999 .

[31]  Warwick Tucker,et al.  Foundations of Computational Mathematics a Rigorous Ode Solver and Smale's 14th Problem , 2022 .

[32]  Kenneth R. Meyer,et al.  Generic Bifurcation of Periodic Points , 2020, Hamiltonian Dynamical Systems.

[33]  Zbigniew Galias,et al.  Rigorous Numerical Studies of the Existence of Periodic Orbits for the Hénon Map , 1998, J. Univers. Comput. Sci..

[34]  Martin Lara,et al.  On the numerical continuation of periodic orbits: An intrinsic, 3-dimensional, differential, predictor-corrector algorithm , 2002 .

[35]  Peter Schmelcher,et al.  Detecting Unstable Periodic Orbits of Chaotic Dynamical Systems , 1997 .

[36]  Roberto Barrio,et al.  Bounds for the chaotic region in the Lorenz model , 2009 .

[37]  Mao,et al.  Hamiltonian bifurcation theory of closed orbits in the diamagnetic Kepler problem. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[38]  Cvitanovic,et al.  Invariant measurement of strange sets in terms of cycles. , 1988, Physical review letters.

[39]  Rudolf Krawczyk,et al.  Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken , 1969, Computing.

[40]  J. Ramos Determination of periodic orbits of nonlinear oscillators by means of piecewise-linearization methods , 2006 .

[41]  Yoshitaka Saiki,et al.  Numerical detection of unstable periodic orbits in continuous-time dynamical systems with chaotic behaviors , 2007 .

[42]  J.H.B. Deane,et al.  Unstable periodic orbit detection for ODES with periodic forcing , 2006 .

[43]  H. Kokubu,et al.  Rigorous verification of cocoon bifurcations in the Michelson system , 2007 .

[44]  T. J. Rivlin An Introduction to the Approximation of Functions , 2003 .

[45]  Roberto Barrio,et al.  Systematic search of symmetric periodic orbits in 2DOF Hamiltonian systems , 2009 .

[46]  G. Arioli Branches of periodic orbits for the planar restricted 3-body problem , 2004 .