Secant Dimensions of Minimal Orbits: Computations and Conjectures

We present an algorithm for computing the dimensions of higher secant varieties of minimal orbits. Experiments with this algorithm lead to many conjectures on secant dimensions, especially of Grassmannians and Segre products. For these two classes of minimal orbits we give a short proof of the relation—known from the work of Ehrenborg, Catalisano–Geramita–Gimigliano, and Sturmfels–Sullivant—between the existence of certain codes and nondefectiveness of certain higher secant varieties.

[1]  A. Geramita,et al.  Higher secant varieties of the Segre varieties , 2005 .

[2]  A. Iarrobino,et al.  Power Sums, Gorenstein Algebras, and Determinantal Loci , 2000 .

[3]  F. Zak Tangents and Secants of Algebraic Varieties , 1993 .

[4]  J. Alexander,et al.  La méthode d'Horace éclatée: application à l'interpolation en degré quatre , 1992 .

[5]  Stefan Kuhr,et al.  Department of Mathematics and Computer Science , 2002 .

[6]  Osami Yasukura,et al.  Secant varieties of adjoint varieties: Orbit decomposition , 2000 .

[7]  Alessandro Gimigliano,et al.  Secant varieties of Grassmann varieties , 2004 .

[8]  A. Hirschowitz La Methode d1Horace pour l'Interpolation à Plusieurs Variables , 1985 .

[9]  C. D. Boor,et al.  Polynomial interpolation in several variables , 1994 .

[10]  Joe W. Harris,et al.  Algebraic Geometry: A First Course , 1995 .

[11]  R. Ehrenborg On Apolarity and Generic Canonical Forms , 1999 .

[12]  J. Draisma,et al.  Higher secant varieties of the minimal adjoint orbit , 2003, math/0312370.

[13]  Armand Borel Linear Algebraic Groups , 1991 .

[14]  Seth Sullivant,et al.  Combinatorial secant varieties , 2005 .

[15]  J. Alexander Singularités imposables en position générale à une hypersurface projective , 1988 .

[16]  M. Ohno,et al.  Adjoint varieties and their secant varieties , 1999 .

[17]  J. Humphreys Introduction to Lie Algebras and Representation Theory , 1973 .

[18]  R. Carter LECTURES ON QUANTUM GROUPS (Graduate Studies in Mathematics 6) By Jens Carsten Jantzen: 266 pp., US$44.00, ISBN 0 8218 0478 2 (American Mathematical Society, 1996). , 1997 .

[19]  R. W. Carter,et al.  ‘GROUPES ET ALGEBRES DE LIE’ CHAPTERS 2, 3 , 1974 .

[20]  J. Jantzen Lectures on quantum groups , 1995 .

[21]  J. Landsberg,et al.  On the ideals and singularities of secant varieties of Segre varieties , 2006, math/0601452.

[22]  A probabilistic algorithm for the secant defect of Grassmann varieties , 2005, math/0511683.

[23]  Alessandro Terracini,et al.  Sulle vk per cui la varietÀ degli sh (h + 1) seganti ha dimensione minore delĽordinario , 1911 .

[24]  Tomas Sauer,et al.  Polynomial interpolation in several variables , 2000, Adv. Comput. Math..