Secant Dimensions of Minimal Orbits: Computations and Conjectures
暂无分享,去创建一个
[1] A. Geramita,et al. Higher secant varieties of the Segre varieties , 2005 .
[2] A. Iarrobino,et al. Power Sums, Gorenstein Algebras, and Determinantal Loci , 2000 .
[3] F. Zak. Tangents and Secants of Algebraic Varieties , 1993 .
[4] J. Alexander,et al. La méthode d'Horace éclatée: application à l'interpolation en degré quatre , 1992 .
[5] Stefan Kuhr,et al. Department of Mathematics and Computer Science , 2002 .
[6] Osami Yasukura,et al. Secant varieties of adjoint varieties: Orbit decomposition , 2000 .
[7] Alessandro Gimigliano,et al. Secant varieties of Grassmann varieties , 2004 .
[8] A. Hirschowitz. La Methode d1Horace pour l'Interpolation à Plusieurs Variables , 1985 .
[9] C. D. Boor,et al. Polynomial interpolation in several variables , 1994 .
[10] Joe W. Harris,et al. Algebraic Geometry: A First Course , 1995 .
[11] R. Ehrenborg. On Apolarity and Generic Canonical Forms , 1999 .
[12] J. Draisma,et al. Higher secant varieties of the minimal adjoint orbit , 2003, math/0312370.
[13] Armand Borel. Linear Algebraic Groups , 1991 .
[14] Seth Sullivant,et al. Combinatorial secant varieties , 2005 .
[15] J. Alexander. Singularités imposables en position générale à une hypersurface projective , 1988 .
[16] M. Ohno,et al. Adjoint varieties and their secant varieties , 1999 .
[17] J. Humphreys. Introduction to Lie Algebras and Representation Theory , 1973 .
[18] R. Carter. LECTURES ON QUANTUM GROUPS (Graduate Studies in Mathematics 6) By Jens Carsten Jantzen: 266 pp., US$44.00, ISBN 0 8218 0478 2 (American Mathematical Society, 1996). , 1997 .
[19] R. W. Carter,et al. ‘GROUPES ET ALGEBRES DE LIE’ CHAPTERS 2, 3 , 1974 .
[20] J. Jantzen. Lectures on quantum groups , 1995 .
[21] J. Landsberg,et al. On the ideals and singularities of secant varieties of Segre varieties , 2006, math/0601452.
[22] A probabilistic algorithm for the secant defect of Grassmann varieties , 2005, math/0511683.
[23] Alessandro Terracini,et al. Sulle vk per cui la varietÀ degli sh (h + 1) seganti ha dimensione minore delĽordinario , 1911 .
[24] Tomas Sauer,et al. Polynomial interpolation in several variables , 2000, Adv. Comput. Math..