Zermelo-Markov-Dubins problem and extensions in marine navigation*
暂无分享,去创建一个
Jean-Baptiste Caillau | Thomas Mensch | Sofya Maslovskaya | Jean-Baptiste Pomet | Timothée Moulinier
[1] M. Chyba,et al. Singular Trajectories and Their Role in Control Theory , 2003, IEEE Transactions on Automatic Control.
[2] A. Agrachev,et al. Control Theory from the Geometric Viewpoint , 2004 .
[3] Efstathios Bakolas,et al. Optimal Synthesis of the Zermelo–Markov–Dubins Problem in a Constant Drift Field , 2013, J. Optim. Theory Appl..
[4] J. Coron. Control and Nonlinearity , 2007 .
[5] J. Hedrick,et al. Optimal Path Planning with a Kinematic Airplane Model , 2007 .
[6] J. Sussmann,et al. SHORTEST PATHS FOR THE REEDS-SHEPP CAR: A WORKED OUT EXAMPLE OF THE USE OF GEOMETRIC TECHNIQUES IN NONLINEAR OPTIMAL CONTROL. 1 , 1991 .
[7] Jean-Daniel Boissonnat,et al. Shortest paths of bounded curvature in the plane , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.
[8] M. Zelikin,et al. Control theory and optimization I , 1999 .
[9] F. Jean. The car with N Trailers : characterization of the singular configurations , 1996 .
[10] L. Dubins. On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal Positions and Tangents , 1957 .
[11] Craig A. Woolsey,et al. Minimum-Time Path Planning for Unmanned Aerial Vehicles in Steady Uniform Winds , 2009 .
[12] S. Sastry,et al. Nonholonomic motion planning: steering using sinusoids , 1993, IEEE Trans. Autom. Control..