Flat single crystal Ge membranes for sensors and opto-electronic integrated circuitry

[1]  K. Saraswat,et al.  Electroluminescence from Strained Ge membranes and Implications for an Efficient Si-Compatible Laser , 2012, 1202.3530.

[2]  M. Myronov,et al.  Reverse graded strain relaxed SiGe buffers for CMOS and optoelectronic integration , 2012 .

[3]  K. Saraswat,et al.  Strained germanium thin film membrane on silicon substrate for optoelectronics. , 2011, Optics express.

[4]  M. Myronov,et al.  High quality relaxed Ge layers grown directly on a Si(0 0 1) substrate , 2011 .

[5]  M. Myronov,et al.  High quality strained Ge epilayers on a Si0.2Ge0.8/Ge/Si(100) global strain-tuning platform , 2010 .

[6]  Jean-Michel Hartmann,et al.  Wet Chemical Etching of Si, Si1-xGex, and Ge in HF:H2O2:CH3COOH , 2010 .

[7]  M. Myronov,et al.  Reverse graded SiGe/Ge/Si buffers for high-composition virtual substrates , 2010 .

[8]  J. Michel,et al.  Ge-on-Si laser operating at room temperature. , 2010, Optics letters.

[9]  T. Tritt Thermal Conductivity: Theory, Properties, and Applications , 2010 .

[10]  M. Myronov,et al.  Reverse graded relaxed buffers for high Ge content SiGe virtual substrates , 2008 .

[11]  K. Hane,et al.  Optically Flat Micromirror Using Stretched Membrane with Crystallization-Induced Stress , 2007, 2007 IEEE/LEOS International Conference on Optical MEMS and Nanophotonics.

[12]  D. Law,et al.  40% efficient metamorphic GaInP∕GaInAs∕Ge multijunction solar cells , 2007 .

[13]  Kamran Eshraghian,et al.  SoC Emerging Technologies , 2006, Proceedings of the IEEE.

[14]  An-Bang Wang,et al.  WRINKLING OF A DEBONDED INITIALLY COMPRESSED Si1-XGeX FILM , 2005 .

[15]  Yuang-Cherng Chiou,et al.  Effects of mechanical agitation and surfactant additive on silicon anisotropic etching in alkaline KOH solution , 2005 .

[16]  Dimitri A. Antoniadis,et al.  Strained Si on insulator technology: from materials to devices , 2004 .

[17]  Laurent Vivien,et al.  Reduced pressure–chemical vapor deposition of Ge thick layers on Si(001) for 1.3–1.55-μm photodetection , 2004 .

[18]  M. Vos,et al.  Preparation of a 10 nm thick single-crystal silicon membrane self-supporting over a diameter of 1 mm , 2000 .

[19]  Ernst Obermeier,et al.  Microactuators and their technologies , 2000 .

[20]  Man Wong,et al.  Germanium as a versatile material for low-temperature micromachining , 1999 .

[21]  S. Shevchenko Electrical conductivity of germanium with dislocation grids , 1999 .

[22]  Steven A. Ringel,et al.  High minority-carrier lifetimes in GaAs grown on low-defect-density Ge/GeSi/Si substrates , 1998 .

[23]  J. Bustillo,et al.  Surface micromachining for microelectromechanical systems , 1998, Proc. IEEE.

[24]  M. Elwenspoek Silicon Micromachining , 1998 .

[25]  Scott D. Collins,et al.  Etch Stop Techniques for Micromachining , 1997 .

[26]  J. Schreiber,et al.  EBIC Experiments at Dislocations in Germanium , 1992 .

[27]  O. Tabata,et al.  Anisotropic etching of silicon in TMAH solutions , 1992 .

[28]  G. Rempe,et al.  Measurement of ultralow losses in an optical interferometer. , 1992, Optics letters.

[29]  Kevin C. Lee The Fabrication of Thin, Freestanding, Single‐Crystal, Semiconductor Membranes , 1990 .