Finite time ℋ∞ control via dynamic output feedback for linear continuous systems with norm-bounded disturbances

This paper investigates the synthesis of full order output dynamic controller for linear continuous system with norm-bounded disturbances. This controller ensures the finite time boundedness of the closed loop system and satisfies the ℋ∞ criterion. The design conditions obtained by means of Lyapunov functions are expressed in term of linear matrix inequalities.

[1]  Jian Xiao,et al.  Comment on “Finite-time H∞ control for linear continuous system with norm-bounded disturbance” , 2011 .

[2]  P. Dorato SHORT-TIME STABILITY IN LINEAR TIME-VARYING SYSTEMS , 1961 .

[3]  Francesco Amato,et al.  Finite-Time Control of Linear Systems: A Survey , 2006 .

[4]  P. Gahinet,et al.  H∞ design with pole placement constraints: an LMI approach , 1996, IEEE Trans. Autom. Control..

[5]  Eric Magarotto Approche LMI pour la synthèse de correcteurs et d'observateurs : application aux systèmes spatiaux et bilinéaires , 1999 .

[6]  Francesco Amato,et al.  Finite-time control for uncertain linear systems with disturbance inputs , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[7]  Carlo Cosentino,et al.  Finite-time stabilization via dynamic output feedback, , 2006, Autom..

[8]  Mohammad N. ElBsat,et al.  Finite-time control and estimation of nonlinear systems with disturbance attenuation , 2012 .

[9]  Yanjun Shen,et al.  Finite-time H∞ control for linear continuous system with norm-bounded disturbance , 2009 .

[10]  Neil Munro,et al.  LMI BASED GAIN-SCHEDULED CONTROL , 2004 .

[11]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[12]  Peter Dorato,et al.  An Overview of Finite-Time Stability , 2006 .

[13]  Francesco Amato,et al.  Finite-time control of linear systems subject to parametric uncertainties and disturbances , 2001, Autom..

[14]  R. C. Thompson,et al.  Eigenvalues of partitioned hermitian matrices , 1970, Bulletin of the Australian Mathematical Society.