Tool life and surface integrity when turning titanium aluminides with PCD tools under conventional wet cutting and cryogenic cooling

[1]  Konrad Wegener,et al.  Comparison of Ground and Laser Machined Polycrystalline Diamond (PCD) Tools in Cutting Carbon Fiber Reinforced Plastics (CFRP) for Aircraft Structures , 2012 .

[2]  Xin Chen,et al.  Preliminary Study on Deep-Hole Drilling Gamma Titanium Aluminide , 2010 .

[3]  Stefania Rizzuti,et al.  Effects of cutting angle, edge preparation, and nano-structured coating on milling performance of a gamma titanium aluminide , 2012 .

[4]  Yakup Yildiz,et al.  A review of cryogenic cooling in machining processes , 2008 .

[5]  M. Cook,et al.  Trends and recent developments in the material manufacture and cutting tool application of polycrystalline diamond and polycrystalline cubic boron nitride , 2000 .

[6]  I. S. Jawahir,et al.  Cryogenic Machining-Induced Surface Integrity: A Review and Comparison with Dry, MQL, and Flood-Cooled Machining , 2014 .

[7]  David K. Aspinwall,et al.  Cutting temperatures when ball nose end milling γ-TiAl intermetallic alloys , 2013 .

[8]  D. Aspinwall,et al.  Cutting Force Evaluation when High Speed End Milling a Gamma Titanium Aluminide Intermetallic Alloy , 2006 .

[9]  Norman M. Wereley,et al.  Advances in gamma titanium aluminides and their manufacturing techniques , 2012 .

[10]  L. D. Lacalle,et al.  Turning of gamma TiAl Intermetallic alloys , 2009 .

[11]  David K. Aspinwall,et al.  The Machining of ?-TiAI Intermetallic Alloys , 2005 .

[12]  A. Lamikiz,et al.  Hole Making in Gamma Tial , 2010 .

[13]  Xin Chen,et al.  Experimental Study on Deep Hole Drilling Gamma Titanium Aluminide , 2010 .

[14]  Paolo C. Priarone,et al.  An evaluative approach to correlate machinability, microstructures, and material properties of gamma titanium aluminides , 2014 .

[15]  David K. Aspinwall,et al.  Surface integrity of a high speed milled gamma titanium aluminide , 2001 .

[16]  M. Bermingham,et al.  A comparison of cryogenic and high pressure emulsion cooling technologies on tool life and chip morphology in Ti-6Al-4V cutting , 2012 .

[17]  A. F. Ismail,et al.  Effectiveness of uncoated WC–Co and PCD inserts in end milling of titanium alloy—Ti–6Al–4V , 2007 .

[18]  Gérard Poulachon,et al.  Tool-life and wear mechanisms of CBN tools in machining of Inconel 718 , 2007 .

[19]  H. Clemens,et al.  Development Status, Applications and Perspectives of Advanced Intermetallic Titanium Aluminides , 2014 .

[20]  Z. Y. Wang,et al.  Cryogenic machining of hard-to-cut materials , 2000 .

[21]  D. Aspinwall,et al.  Workpiece surface integrity considerations when finish turning gamma titanium aluminide , 2001 .

[22]  R. G. V. Perez Wear mechanisms of WC inserts in face milling of gamma titanium aluminides , 2005 .

[23]  D. Aspinwall,et al.  Surface integrity and fatigue life of turned gamma titanium aluminide , 1997 .

[24]  D. Reynaerts,et al.  Machinability Investigation on High Speed Hard Turning of ZrO2 with PCD Tools , 2012 .

[25]  C. Klinkenberg,et al.  Physical aspects of hot-working gamma-based titanium aluminides , 2004 .

[26]  Toshimitsu Tetsui,et al.  Gamma Ti aluminides for non-aerospace applications , 1999 .

[27]  David K. Aspinwall,et al.  Workpiece surface integrity when slot milling γ-TiAl intermetallic alloy , 2014 .

[28]  A. Pramanik Problems and solutions in machining of titanium alloys , 2014 .

[29]  R. Krishnamurthy,et al.  The performance of CBN tools in the machining of titanium alloys , 2000 .

[30]  Álisson Rocha Machado,et al.  Evaluation of the performance of CBN tools when turning Ti-6Al-4V alloy with high pressure coolant supplies , 2005 .

[31]  Oliver Kättlitz,et al.  Investment casting technology for production of TiAl low pressure turbine blades – Process engineering and parameter analysis , 2011 .

[32]  Sarala Djanarthany,et al.  An overview of monolithic titanium aluminides based on Ti3Al and TiAl , 2001 .

[33]  Y. L. Wang,et al.  Microstructural characteristics of Ti–45Al–8.5Nb/TiB2 composites by powder metallurgy , 2009 .

[34]  L. N. López de Lacalle,et al.  Milling of gamma titanium–aluminum alloys , 2012 .

[35]  D. Larsen Status of investment cast gamma titanium aluminides in the USA , 1996 .

[36]  K. Shindo,et al.  Fabrication of TiAl components by means of hot forging and machining , 2005 .

[37]  Paolo C. Priarone,et al.  POLITECNICO DI TORINO Repository ISTITUZIONALE High performance cutting of gamma titanium aluminides : Influence of lubricoolant strategy on tool wear and surface integrity / , 2022 .

[38]  K. Weinert,et al.  Machining Sequence to Manufacture a γ‐TiAl‐Conrod for Application in Combustion Engines , 2006 .

[39]  Paolo C. Priarone,et al.  Effectiveness of Minimizing Cutting Fluid Use when Turning Difficult-to-cut Alloys☆ , 2015 .

[40]  I. Jones,et al.  Effects of major alloying additions on the microstructure and mechanical properties of γ-TiAl , 1999 .

[41]  Nikolay V. Suetin,et al.  Thermal conductivity of diamond composites sintered under high pressures , 2008 .

[42]  Gérard Poulachon,et al.  Wear behavior of CBN tools while turning various hardened steels , 2004 .

[43]  David K. Aspinwall,et al.  The effects of machined workpiece surface integrity on the fatigue life of γ-titanium aluminide , 2001 .

[44]  K. Gebauer Performance, tolerance and cost of TiAl passenger car valves , 2006 .

[45]  F. Klocke Manufacturing Processes 1 , 2011 .

[46]  Fritz Klocke,et al.  On high-speed turning of a third-generation gamma titanium aluminide , 2013 .

[47]  C. Austin Current status of gamma Ti aluminides for aerospace applications , 1999 .

[48]  S. Zamani,et al.  Investigation of Surface Integrity in High Speed Milling of Gamma Titanium Aluminide under Dry and Minimum Quantity Lubricant Conditions , 2015 .

[49]  P. Philbin,et al.  Characterisation of the wear behaviour of polycrystalline diamond (PCD) tools when machining wood-based composites , 2005 .