Greigite: a true intermediate on the polysulfide pathway to pyrite

[1]  S. Bottrell,et al.  The formation and preservation of greigite , 2006 .

[2]  A. P. Finlayson,et al.  Magnetic properties, microstructure, composition, and morphology of greigite nanocrystals in magnetotactic bacteria from electron holography and tomography , 2006 .

[3]  A. Roberts,et al.  Magnetite dissolution, diachronous greigite formation, and secondary magnetizations from pyrite oxidation: Unravelling complex magnetizations in Neogene marine sediments from New Zealand , 2006 .

[4]  J. Morse,et al.  Acid volatile sulfide (AVS) , 2005 .

[5]  Timothy O. Drews,et al.  A mathematical model for crystal growth by aggregation of precursor metastable nanoparticles. , 2005, The journal of physical chemistry. B.

[6]  S. E. Pepper,et al.  The kinetics and mechanisms of goethite and hematite crystallization under alkaline conditions, and in the presence of phosphate , 2005 .

[7]  U. Schwertmann,et al.  Long-term in vitro transformation of 2-line ferrihydrite to goethite/hematite at 4, 10, 15 and 25ºC , 2004, Clay Minerals.

[8]  J. Ehrhardt,et al.  Removal of hexavalent chromium from solutions by mackinawite, tetragonal FeS , 2004 .

[9]  R. L. Penn,et al.  Kinetics of Oriented Aggregation , 2004 .

[10]  Andrew P. Roberts,et al.  Carbon-sulfur-iron relationships in sedimentary rocks from southwestern Taiwan: influence of geochemical environment on greigite and pyrrhotite formation , 2004 .

[11]  J. Banfield,et al.  Special phase transformation and crystal growth pathways observed in nanoparticles† , 2003, Geochemical transactions.

[12]  K. Hayes,et al.  Impact of transition metals on reductive dechlorination rate of hexachloroethane by mackinawite. , 2003, Environmental Science and Technology.

[13]  Feng Huang,et al.  Two-Stage Crystal-Growth Kinetics Observed during Hydrothermal Coarsening of Nanocrystalline ZnS , 2003 .

[14]  J. Ehrhardt,et al.  XPS study of the reaction of chromium (VI) with mackinawite (FeS) , 2002 .

[15]  P. Searson,et al.  Epitaxial Assembly in Aged Colloids , 2001 .

[16]  J. Banfield,et al.  Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. , 2000, Science.

[17]  A. Faleiros,et al.  Kinetics of phase change , 2000 .

[18]  H. Barnes,et al.  Reaction pathways in the Fe-S system below 100°C , 2000 .

[19]  S. Shaw,et al.  Hydrothermal formation of the calcium silicate hydrates, tobermorite (Ca5Si6O16(OH)2·4H2O) and xonotlite (Ca6Si6O17(OH)2): an in situ synchrotron study , 2000 .

[20]  K. Hayes,et al.  Kinetics of the Transformation of Halogenated Aliphatic Compounds by Iron Sulfide , 2000 .

[21]  K. Hayes,et al.  Kinetics of the Transformation of Trichloroethylene and Tetrachloroethylene by Iron Sulfide , 1999 .

[22]  Jillian F. Banfield,et al.  Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: insights from titania , 1999 .

[23]  R. Frankel,et al.  Iron sulfides from magnetotactic bacteria; structure, composition, and phase transitions , 1998 .

[24]  Banfield,et al.  Oriented attachment and growth, twinning, polytypism, and formation of metastable phases: Insights from nanocrystalline TiO2 , 1998 .

[25]  Banfield,et al.  Imperfect oriented attachment: dislocation generation in defect-free nanocrystals , 1998, Science.

[26]  R. Frankel,et al.  Reaction sequence of iron sulfide minerals in bacteria and their use as biomarkers. , 1998, Science.

[27]  K. Hayes,et al.  Effects of Solution Composition and pH on the Reductive Dechlorination of Hexachloroethane by Iron Sulfide , 1997 .

[28]  S. Fendorf,et al.  Reduction of Hexavalent Chromium by Amorphous Iron Sulfide , 1997 .

[29]  David J. Vaughan,et al.  Transformation of mackinawite to greigite: An in situ X-ray powder diffraction and transmission electron microscope study , 1997 .

[30]  H. Barnes,et al.  Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species , 1996 .

[31]  Simon M. Clark,et al.  A new energy-dispersive powder diffraction facility at the SRS , 1996 .

[32]  A. Roberts,et al.  Diagenetic formation of ferrimagnetic iron sulphide minerals in rapidly deposited marine sediments, South Island, New Zealand , 1993 .

[33]  R. W. Cheary,et al.  A fundamental parameters approach to X-ray line-profile fitting , 1992 .

[34]  G. Luther Pyrite synthesis via polysulfide compounds , 1991 .

[35]  M. Schoonen,et al.  Reactions forming pyrite and marcasite from solution: I. Nucleation of FeS2 below 100°C , 1991 .

[36]  Martin A. A. Schoonen,et al.  Reactions forming pyrite and marcasite from solution: II. Via FeS precursors below 100°C , 1991 .

[37]  J. Drever,et al.  Aquatic Chemical Kinetics , 1991 .

[38]  K. Stetter,et al.  Pyrite formation linked with hydrogen evolution under anaerobic conditions , 1990, Nature.

[39]  R. Berner Sedimentary pyrite formation: An update , 1984 .

[40]  U. Schwertmann,et al.  Effect of pH on the Formation of Goethite and Hematite from Ferrihydrite , 1983 .

[41]  R. Kirkpatrick CHAPTER 8. KINETICS OF CRYSTALLIZATION OF IGNEOUS ROCKS , 1981 .

[42]  D. Vaughan,et al.  Mössbauer studies of some sulphide minerals , 1971 .

[43]  R. Berner Stability Fields of Iron Minerals in Anaerobic Marine Sediments , 1964, The Journal of geology.

[44]  R. Berner Iron Sulfides Formed from Aqueous Solution at Low Temperatures and Atmospheric Pressure , 1964, The Journal of Geology.

[45]  R. Berner Distribution and diagenesis of sulfur in some sediments from the Gulf of California , 1964 .

[46]  M. Avrami Kinetics of Phase Change. II Transformation‐Time Relations for Random Distribution of Nuclei , 1940 .

[47]  M. Avrami Kinetics of Phase Change. I General Theory , 1939 .

[48]  J. R. Sutton A New Mineral? , 1911, Nature.

[49]  Devro J. VeucHer,et al.  Electronic structure of thiospinel minerals : results from MO calculations , 2007 .

[50]  L. Benning,et al.  The rate of ferrihydrite transformation to goethite via the Fe(II) pathway , 2006 .

[51]  F. Larachi,et al.  Capillary electrophoretic separation of inorganic sulfur-sulfide, polysulfides, and sulfur-oxygen species. , 2006, Journal of separation science.

[52]  R. Pattrick,et al.  X-ray absorption spectroscopy studies of reactions of technetium, uranium and neptunium with mackinawite. , 2004, Journal of environmental radioactivity.

[53]  A. Lasaga Kinetic theory in the earth sciences , 1998 .

[54]  H. Barnes,et al.  Formation processes of framboidal pyrite , 1997 .

[55]  George W. Luther,et al.  Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125°C: The rate equation , 1997 .

[56]  R. Frankel,et al.  Biomineralization of ferrimagnetic greigite (Fe3S4) and iron pyrite (FeS2) in a magnetotactic bacterium , 1990, Nature.

[57]  R. Steudel,et al.  Ion-pair chromatographic separation of inorganic sulphur anions including polysulphide☆ , 1989 .

[58]  R. Kirkpatrick Kinetics of crystallization of igneous rocks , 1981 .

[59]  A. Lasaga Rate laws of chemical reactions , 1981 .

[60]  A. Lasaga,et al.  Kinetics of geochemical processes , 1981 .

[61]  R. Berner Sedimentary pyrite formation , 1970 .

[62]  F. HulbertS Models for solid-state reactions in powdered compacts : A review. , 1969 .

[63]  B. Skinner,et al.  Greigite, the thio-spinel of iron; a new mineral , 1964 .

[64]  M. Avrami,et al.  Kinetics of Phase Change 2 , 1940 .

[65]  W. A. Johnson Reaction Kinetics in Processes of Nucleation and Growth , 1939 .

[66]  A. S.,et al.  Lehrbuch der Anorganischen Chemie , 1900, Nature.

[67]  R. Pamer,et al.  Transformation of mackinawite to greigite : An in situ X-ray powder diffraction and transmission electron microscope study , 2022 .