National contributions to climate change due to historical emissions of carbon dioxide, methane, and nitrous oxide since 1850

[1]  T. Gasser,et al.  Climate Warming Mitigation from Nationally Determined Contributions , 2022, Advances in Atmospheric Sciences.

[2]  J. Mankin,et al.  National attribution of historical climate damages , 2022, Climatic Change.

[3]  R. Jackson,et al.  Land-use emissions embodied in international trade , 2022, Science.

[4]  P. Ciais,et al.  Indicate separate contributions of long-lived and short-lived greenhouse gases in emission targets , 2022, npj Climate and Atmospheric Science.

[5]  William F. Lamb,et al.  A comprehensive and synthetic dataset for global, regional, and national greenhouse gas emissions by sector 1970–2018 with an extension to 2019 , 2021, Earth System Science Data.

[6]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[7]  R. Houghton,et al.  Comparison of uncertainties in land-use change fluxes from bookkeeping model parameterisation , 2021, Earth System Dynamics.

[8]  P. Ciais,et al.  Large historical carbon emissions from cultivated northern peatlands , 2021, Science Advances.

[9]  G. Marland,et al.  CDIAC-FF: global and national CO2 emissions from fossil fuel combustion and cement manufacture: 1751–2017 , 2021 .

[10]  P. Ciais,et al.  The contributions of individual countries and regions to the global radiative forcing , 2021, Proceedings of the National Academy of Sciences.

[11]  F. Tubiello,et al.  Food systems are responsible for a third of global anthropogenic GHG emissions , 2021, Nature Food.

[12]  Matthew W. Jones,et al.  Fossil CO2 emissions in the post-COVID-19 era , 2021, Nature Climate Change.

[13]  M. Allen,et al.  Further improvement of warming-equivalent emissions calculation , 2021, npj Climate and Atmospheric Science.

[14]  Christopher J. Smith,et al.  An integrated approach to quantifying uncertainties in the remaining carbon budget , 2021, Communications Earth & Environment.

[15]  R. Bintanja,et al.  Contribution of climatic changes in mean and variability to monthly temperature and precipitation extremes , 2021, Communications Earth & Environment.

[16]  R. Jackson,et al.  Global and regional drivers of land-use emissions in 1961–2017 , 2021, Nature.

[17]  G. Peters,et al.  A future perspective of historical contributions to climate change , 2021, Climatic Change.

[18]  K. Calvin,et al.  Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6 , 2020, Geoscientific Model Development.

[19]  Atul K. Jain,et al.  Global Carbon Budget 2020 , 2020, Earth System Science Data.

[20]  D. J. Ruiz,et al.  A comprehensive quantification of global nitrous oxide sources and sinks , 2020, Nature.

[21]  J. Fuglestvedt,et al.  Updated Global Warming Potentials and Radiative Efficiencies of Halocarbons and Other Weak Atmospheric Absorbers , 2020, Reviews of geophysics.

[22]  P. Ciais,et al.  Historical CO2 emissions from land use and land cover change and their uncertainty , 2020 .

[23]  F. Tubiello,et al.  Drainage of organic soils and GHG emissions: validation with country data , 2020, Earth System Science Data.

[24]  P. Ciais,et al.  Short-lived climate forcers have long-term climate impacts via the carbon–climate feedback , 2020, Nature Climate Change.

[25]  Richard G. Williams,et al.  Controls of the transient climate response to emissions by physical feedbacks, heat uptake and carbon cycling , 2020, Environmental Research Letters.

[26]  G. Janssens‑Maenhout,et al.  High resolution temporal profiles in the Emissions Database for Global Atmospheric Research , 2020, Scientific Data.

[27]  Tomoko Hasegawa,et al.  Harmonization of Global Land-Use Change and Management for the Period 850–2100 (LUH2) for CMIP6 , 2020 .

[28]  P. Ciais,et al.  Historical CO2 emissions from land-use and land-cover change and their uncertainty , 2020 .

[29]  Christopher J. Smith,et al.  FaIRv2.0.0: a generalized impulse response model for climate uncertainty and future scenario exploration , 2020, Geoscientific Model Development.

[30]  P. Friedlingstein,et al.  Quantifying process-level uncertainty contributions to TCRE and carbon budgets for meeting Paris Agreement climate targets , 2020, Environmental Research Letters.

[31]  V. Brovkin,et al.  Is there warming in the pipeline? A multi-model analysis of the zero emission commitment from CO2 , 2020 .

[32]  M. Allen,et al.  Demonstrating GWP*: a means of reporting warming-equivalent emissions that captures the contrasting impacts of short- and long-lived climate pollutants , 2020, Environmental research letters : ERL [Web site].

[33]  Pierre Friedlingstein,et al.  Carbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models , 2019, Biogeosciences.

[34]  P. Forster,et al.  Guidance on emissions metrics for nationally determined contributions under the Paris Agreement , 2019, Environmental Research Letters.

[35]  M. Allen,et al.  Improved calculation of warming-equivalent emissions for short-lived climate pollutants , 2019, npj Climate and Atmospheric Science.

[36]  Christopher J. Smith,et al.  Estimating and tracking the remaining carbon budget for stringent climate targets , 2019, Nature.

[37]  S. Perkins‐Kirkpatrick,et al.  Assessing Contributions of Major Emitters' Paris‐Era Decisions to Future Temperature Extremes , 2019, Geophysical Research Letters.

[38]  J. Canadell,et al.  Drivers of declining CO2 emissions in 18 developed economies , 2019, Nature Climate Change.

[39]  Robbie M. Andrew,et al.  Global CO2 emissions from cement production, 1928–2018 , 2018, Earth System Science Data.

[40]  P. Ciais,et al.  Path-dependent reductions in CO2 emission budgets caused by permafrost carbon release , 2018, Nature Geoscience.

[41]  M. Allen,et al.  A solution to the misrepresentations of CO2-equivalent emissions of short-lived climate pollutants under ambitious mitigation , 2018, npj Climate and Atmospheric Science.

[42]  P. Friedlingstein,et al.  The utility of the historical record for assessing the transient climate response to cumulative emissions , 2018, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[43]  T. Berntsen,et al.  Assigning historic responsibility for extreme weather events , 2017 .

[44]  P. Friedlingstein,et al.  Emission budgets and pathways consistent with limiting warming to 1.5 °C , 2017 .

[45]  J. Randerson,et al.  Global fire emissions estimates during 1997–2016 , 2017 .

[46]  M. Allen,et al.  The rise in global atmospheric CO2, surface temperature, and sea level from emissions traced to major carbon producers , 2017, Climatic Change.

[47]  Peter Bergamaschi,et al.  EDGAR v4.3.2 Global Atlas of the three major greenhouse gas emissions for the period 1970–2012 , 2017, Earth System Science Data.

[48]  Robbie M. Andrew,et al.  Supplementary material to "Global CO2 Emissions from Cement Production" , 2017 .

[49]  Meng Li,et al.  Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS) , 2017 .

[50]  T. Berntsen,et al.  Perspective has a strong effect on the calculation of historical contributions to global warming , 2017 .

[51]  G. Myhre,et al.  Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing , 2016 .

[52]  E. Stehfest,et al.  Anthropogenic land use estimates for the Holocene – HYDE 3.2 , 2016 .

[53]  P. Ciais,et al.  Accounting for the climate–carbon feedback in emission metrics , 2016 .

[54]  M. Rocha,et al.  The PRIMAP-hist national historical emissions time series , 2016 .

[55]  P. Ciais,et al.  The compact Earth system model OSCAR v2.2: description and first results , 2016 .

[56]  V. Brovkin,et al.  The Global Methane Budget 2000–2017 , 2016, Earth System Science Data.

[57]  Philippe Ciais,et al.  The contribution of China’s emissions to global climate forcing , 2016, Nature.

[58]  H. Matthews,et al.  Assessing the implications of human land-use change for the transient climate response to cumulative carbon emissions , 2016 .

[59]  Naomi Oreskes,et al.  The climate responsibilities of industrial carbon producers , 2015, Climatic Change.

[60]  H. Damon Matthews,et al.  Allocating a 2 °C cumulative carbon budget to countries , 2015 .

[61]  E. Hansis,et al.  Relevance of methodological choices for accounting of land use change carbon fluxes , 2015 .

[62]  N. Mahowald,et al.  Contributions of developed and developing countries to global climate forcing and surface temperature change , 2014 .

[63]  R. Houghton,et al.  Terminology as a key uncertainty in net land use and land cover change carbon flux estimates , 2014 .

[64]  H. Damon Matthews,et al.  National contributions to observed global warming , 2014 .

[65]  Niklas Höhne,et al.  Regional GHG reduction targets based on effort sharing: a comparison of studies , 2014 .

[66]  Myles R. Allen,et al.  Constraining the Ratio of Global Warming to Cumulative CO2 Emissions Using CMIP5 Simulations , 2013 .

[67]  Greet Janssens-Maenhout,et al.  Countries’ contributions to climate change: effect of accounting for all greenhouse gases, recent trends, basic needs and technological progress , 2013, Climatic Change.

[68]  P. Ciais,et al.  A theoretical framework for the net land-to-atmosphere CO 2 flux and its implications in the definition of "emissions from land-use change" , 2013 .

[69]  D. Saint‐Martin,et al.  Transient Climate Response in a Two-Layer Energy-Balance Model. Part I: Analytical Solution and Parameter Calibration Using CMIP5 AOGCM Experiments , 2013 .

[70]  Ken Caldeira,et al.  Attribution of atmospheric CO2 and temperature increases to regions: importance of preindustrial land use change , 2012 .

[71]  Ian G. Enting,et al.  Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics:a multi-model analysis , 2012 .

[72]  Xue-Jie Gao,et al.  Developed and developing world responsibilities for historical climate change and CO2 mitigation , 2012, Proceedings of the National Academy of Sciences.

[73]  M. Allen,et al.  Equivalence of greenhouse-gas emissions for peak temperature limits , 2012 .

[74]  Michael J. Prather,et al.  Reactive greenhouse gas scenarios: Systematic exploration of uncertainties and the role of atmospheric chemistry , 2012 .

[75]  J. Fuglestvedt,et al.  Contributions of individual countries’ emissions to climate change and their uncertainty , 2011 .

[76]  T. Wigley,et al.  Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6 - Part 1: Model description and calibration , 2011 .

[77]  J. Canadell,et al.  Attributing the increase in atmospheric CO2 to emitters and absorbers , 2010 .

[78]  W. Landman Climate change 2007: the physical science basis , 2010 .

[79]  Josep G. Canadell,et al.  Current and future CO 2 emissions from drained peatlands in Southeast Asia , 2009 .

[80]  N. Meinshausen,et al.  Warming caused by cumulative carbon emissions towards the trillionth tonne , 2009, Nature.

[81]  N. Höhne,et al.  Differentiating (historic) responsibilities for climate change , 2009 .

[82]  M. Claussen,et al.  Radiative forcing from anthropogenic land cover change since A.D. 800 , 2009 .

[83]  Lukas H. Meyer,et al.  Summary for Policymakers , 2022, The Ocean and Cryosphere in a Changing Climate.

[84]  M. Watson,et al.  Main Report , 2006, Genetics in Medicine.

[85]  Jason Lowe,et al.  Analysing countries' contribution to climate change: scientific and policy-related choices , 2005 .

[86]  Pierre Friedlingstein,et al.  Contributions of past and present human generations to committed warming caused by carbon dioxide. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[87]  P. Ciais,et al.  Amplifying effects of land‐use change on future atmospheric CO2 levels , 2003 .

[88]  Michiel Schaeffer,et al.  Responsibility for Past and Future Global Warming: Uncertainties in Attributing Anthropogenic Climate Change , 2002 .

[89]  Organización de las Naciones Unidas United Nations framework convention on climate change , 1992 .

[90]  P. Sands The United Nations Framework Convention on Climate Change , 1992 .

[91]  G. Peters The Global Carbon Project’s fossil CO2 emissions dataset , 2021 .

[92]  G. Marland,et al.  CDIAC-FF: Global and National CO2 Emissions from Fossil Fuel Combustion and Cement Manufacture: 1751-2017 , 2020 .

[93]  Karl W. Steininger,et al.  Multiple carbon accounting to support just and effective climate policies , 2016 .

[94]  CTSimmons andHDMatthews Assessing the implications of human land-use change for the transient climate response to cumulative carbon emissions , 2016 .

[95]  K. Caldeira,et al.  Attribution of atmospheric CO 2 and temperature increases to regions : importance of preindustrial land use change , 2012 .

[96]  S. Solomon The Physical Science Basis : Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change , 2007 .

[97]  United Kingdom,et al.  GLOBAL FOREST RESOURCES ASSESSMENT 2005 , 2005 .

[98]  L. Guzzo,et al.  I. Description and first results , 1997 .