Preparation of saline-stable, silica-coated triangular silver nanoplates of use for optical sensing.

Triangular silver nanoplates (TSNPs) may find application in next generation optical bio-sensors owing to the high sensitivity of the spectral position of their main plasmon band to changes in local refractive index. Unfortunately, etching of the anisotropic nanoplates to spherical particles occurs upon exposure to chloride ions from salt, with a concomitant decrease in optical sensitivity. Herein are detailed two general methods for the silica coating of TSNPs, with the aim of forming a protective barrier against chloride etching. It has been necessary to modify literature approaches for the coating of spherical Ag nanoparticles, since these are either ineffective for anisotropic nanoplates or lead to their degradation. The first method is a modified Stöber approach using tetraethylorthosilicate (TEOS) as the alkoxide precursor and dimethylamine in low concentration as the basic catalyst, with prior priming of the nanoplate surfaces by diaminopropane. The thickness of the silica layer can be tuned between 7 and 20nm by varying the primer and alkoxide concentrations. The second method involves deposition of a thin dense layer of silica from sodium silicate solution onto mercaptopropyltriethoxysilane (MPTES) or mercaptopropyltrimethoxysilane (MPTMS) primed TSNPs. This latter method offers protection against anion etching - experiments suggest that the adsorbed MPTES provides much of the barrier to chloride ions, while the silica shell serves to prevent particle aggregation. It was found that the silica coated particles substantially retained the sensitivity to refractive index of the as-grown TSNPs while being able to withstand salt concentrations typical of bio-testing conditions.

[1]  Jianfeng Chen,et al.  Fabrication of antibacterial monodispersed Ag–SiO2 core–shell nanoparticles with high concentration , 2009 .

[2]  Denise E. Charles,et al.  Scaling of Surface Plasmon Resonances in Triangular Silver Nanoplate Sols for Enhanced Refractive Index Sensing , 2011 .

[3]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[4]  T. Sahoo,et al.  Quantum efficiency control of InGaN/GaN multi-quantum-well structures using Ag/SiO2 core-shell nanoparticles , 2011 .

[5]  Jian-hui Jiang,et al.  Synthesis and characterization of surface-enhanced Raman scattering tags with Ag/SiO2 core-shell nanostructures using reverse micelle technology. , 2006, Journal of colloid and interface science.

[6]  E. Goldys,et al.  Ultrabright Eu–Doped Plasmonic Ag@SiO2 Nanostructures: Time‐gated Bioprobes with Single Particle Sensitivity and Negligible Background , 2011, Advanced materials.

[7]  Mingyong Han,et al.  Gram-scale synthesis and biofunctionalization of silica-coated silver nanoparticles for fast colorimetric DNA detection. , 2005, Analytical chemistry.

[8]  J. Gilman,et al.  Nanotechnology , 2001 .

[9]  Olivia Niitsoo,et al.  Facile synthesis of silver core - silica shell composite nanoparticles. , 2011, Journal of colloid and interface science.

[10]  Ludovic S. Live,et al.  Reduction of Self-Quenching in Fluorescent Silica-Coated Silver Nanoparticles , 2008 .

[11]  Deirdre M. Ledwith,et al.  Optical Properties and Growth Aspects of Silver Nanoprisms Produced by a Highly Reproducible and Rapid Synthesis at Room Temperature , 2008 .

[12]  Peidong Yang,et al.  Shape Control of Colloidal Metal Nanocrystals , 2008 .

[13]  M. El-Sayed,et al.  Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods , 1999 .

[14]  Lidong Li,et al.  Self-assembly of conjugated polymer-Ag@SiO2 hybrid fluorescent nanoparticles for application to cellular imaging. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[15]  J. Jeon,et al.  Investigation of Optical and Structural Stability of Localized Surface Plasmon Mediated Light‐Emitting Diodes by Ag and Ag/SiO2 Nanoparticles , 2012 .

[16]  Sarah J. Hurst,et al.  Self‐Assembled Monolayer Mediated Silica Coating of Silver Triangular Nanoprisms , 2007 .

[17]  C. Murphy,et al.  Tunable one-dimensional silver-silica nanopeapod architectures. , 2006, The journal of physical chemistry. B.

[18]  Younan Xia,et al.  Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. , 2006, The journal of physical chemistry. B.

[19]  Paul Mulvaney,et al.  Surface Plasmon Spectroscopy of Nanosized Metal Particles , 1996 .

[20]  M. El-Sayed,et al.  Chemistry and properties of nanocrystals of different shapes. , 2005, Chemical reviews.

[21]  Claire M. Cobley,et al.  Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. , 2011, Chemical reviews.

[22]  Leif O. Brown,et al.  A controlled and reproducible pathway to dye-tagged, encapsulated silver nanoparticles as substrates for SERS multiplexing. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[23]  John A Rogers,et al.  Nanostructured plasmonic sensors. , 2008, Chemical reviews.

[24]  Luis M Liz-Marzán,et al.  Recent Progress on Silica Coating of Nanoparticles and Related Nanomaterials , 2010, Advanced materials.

[25]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[26]  J. Hafner,et al.  Localized surface plasmon resonance sensors. , 2011, Chemical reviews.

[27]  L. Liz‐Marzán,et al.  Mapping surface plasmons on a single metallic nanoparticle , 2007 .

[28]  John M Kelly,et al.  Versatile solution phase triangular silver nanoplates for highly sensitive plasmon resonance sensing. , 2010, ACS nano.

[29]  Koji Fujita,et al.  Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles. , 2011, Nano letters.

[30]  J. Ying,et al.  Reverse microemulsion-mediated synthesis of silica-coated gold and silver nanoparticles. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[31]  Kikuo Okuyama,et al.  Characterization of silica-coated Ag nanoparticles synthesized using a water-soluble nanoparticle micelle , 2009 .

[32]  H. Yamashita,et al.  Enhancement of the photoinduced oxidation activity of a ruthenium(II) complex anchored on silica-coated silver nanoparticles by localized surface plasmon resonance. , 2010, Angewandte Chemie.

[33]  G. Schatz,et al.  Electromagnetic fields around silver nanoparticles and dimers. , 2004, The Journal of chemical physics.

[34]  Paul Mulvaney,et al.  Synthesis of Nanosized Gold−Silica Core−Shell Particles , 1996 .

[35]  Wei Zhang,et al.  Multipole-plasmon-enhanced förster energy transfer between semiconductor quantum dots via dual-resonance nanoantenna effects , 2010 .

[36]  L. Liz‐Marzán,et al.  Colloidal silver nanoplates. State of the art and future challenges , 2008 .

[37]  Zhuyuan Wang,et al.  Surface-enhanced fluorescence from fluorophore-assembled monolayers by using Ag@SiO2 nanoparticles. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[38]  Yoshio Kobayashi,et al.  Silica coating of silver nanoparticles using a modified Stober method. , 2005, Journal of colloid and interface science.

[39]  Ulrich Wiesner,et al.  Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles. , 2011, Nano letters.

[40]  George Chumanov,et al.  Measuring the Distance Dependence of the Local Electromagnetic Field from Silver Nanoparticles , 2004 .

[41]  L. Liz‐Marzán,et al.  Redox Catalysis Using Ag@SiO2 Colloids , 1999 .

[42]  Chunzhong Li,et al.  Metal-enhanced fluorescence of carbon dots adsorbed Ag@SiO2 core-shell nanoparticles , 2012 .

[43]  Jackie Y. Ying,et al.  Synthesis of water-soluble and functionalized nanoparticles by silica coating , 2007 .

[44]  Paul Mulvaney,et al.  Controlled Method for Silica Coating of Silver Colloids. Influence of Coating on the Rate of Chemical Reactions , 1998 .

[45]  T. Maung on in C , 2010 .

[46]  W. Stöber,et al.  Controlled growth of monodisperse silica spheres in the micron size range , 1968 .

[47]  Andreas Luch,et al.  Silicification of peptide-coated silver nanoparticles--A Biomimetic soft chemistry approach toward chiral hybrid core-shell materials. , 2011, ACS nano.

[48]  R. V. Van Duyne,et al.  Localized surface plasmon resonance spectroscopy and sensing. , 2007, Annual review of physical chemistry.

[49]  Bin Tang,et al.  Sculpturing Effect of Chloride Ions in Shape Transformation from Triangular to Discal Silver Nanoplates , 2008 .

[50]  Margaret E. Brennan,et al.  Enhanced third-order optical nonlinearity of silver nanoparticles with a tunable surface plasmon resonance. , 2004, Journal of nanoscience and nanotechnology.

[51]  Andrey L Rogach,et al.  Nonspherical Noble Metal Nanoparticles: Colloid‐Chemical Synthesis and Morphology Control , 2010, Advanced materials.

[52]  Feng Wang,et al.  General properties of local plasmons in metal nanostructures. , 2006, Physical review letters.

[53]  J. Nunzi,et al.  Phosphorescent organic light emitting diode efficiency enhancement using functionalized silver nanoparticles , 2011 .

[54]  Shuhua Liu,et al.  Silica-coated metal nanoparticles. , 2009, Chemistry, an Asian journal.

[55]  Christina Graf,et al.  A General Method To Coat Colloidal Particles with Silica , 2003 .

[56]  J. Lakowicz,et al.  Metal Enhanced Fluorescence Solution-based Sensing Platform 2: Fluorescent Core-Shell Ag@SiO2 Nanoballs , 2007, Journal of Fluorescence.

[57]  K. Awazu,et al.  Fabrication of Inert Silver Nanoparticles with a Thin Silica Coating , 2008 .

[58]  Guonan Chen,et al.  Preparation of a new core-shell Ag@SiO2 nanocomposite and its application for fluorescence enhancement. , 2010, Talanta.

[59]  Andrew G. Glen,et al.  APPL , 2001 .

[60]  Aine M. Whelan,et al.  A rapid, straight-forward method for controlling the morphology of stable silver nanoparticles , 2007 .

[61]  Younan Xia,et al.  Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? , 2009, Angewandte Chemie.

[62]  Matijević,et al.  Coating of Nanosize Silver Particles with Silica. , 2000, Journal of colloid and interface science.

[63]  John M Kelly,et al.  Etching-resistant silver nanoprisms by epitaxial deposition of a protecting layer of gold at the edges. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[64]  Xianliang Zheng,et al.  The facet selectivity of inorganic ions on silver nanocrystals in etching reactions , 2009, Nanotechnology.

[65]  Luis M Liz-Marzán,et al.  Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[66]  Duncan Graham,et al.  Rationally designed SERS active silica coated silver nanoparticles. , 2011, Chemical communications.

[67]  Haibing Li,et al.  Colorimetric determination of pyrethroids based on core–shell Ag@SiO2 nanoparticles , 2011 .

[68]  Jooho Moon,et al.  Preparation of Ag/SiO2 nanosize composites by a reverse micelle and sol-gel technique , 1999 .

[69]  D. Zhao,et al.  Core-shell Ag@SiO2@mSiO2 mesoporous nanocarriers for metal-enhanced fluorescence. , 2011, Chemical communications.

[70]  Feng Liu,et al.  A dye functionalized silver–silica core–shell nanoparticle organic light emitting diode , 2011 .

[71]  Andrey L Rogach,et al.  Properties and Applications of Colloidal Nonspherical Noble Metal Nanoparticles , 2010, Advanced materials.

[72]  M. Natan,et al.  Glass-Coated, Analyte-Tagged Nanoparticles: A New Tagging System Based on Detection with Surface-Enhanced Raman Scattering , 2003 .

[73]  J. Lombardi,et al.  Kinetic effects of halide ions on the morphological evolution of silver nanoplates. , 2009, Physical chemistry chemical physics : PCCP.

[74]  Kadir Aslan,et al.  Fluorescent core-shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms. , 2007, Journal of the American Chemical Society.

[75]  Ericka Stricklin-Parker,et al.  Ann , 2005 .