Piezoelectric Mimicry of Flexoelectricity.

The origin of "giant" flexoelectricity, orders of magnitude larger than theoretically predicted, yet frequently observed, is under intense scrutiny. There is mounting evidence correlating giant flexoelectriclike effects with parasitic piezoelectricity, but it is not clear how piezoelectricity (polarization generated by strain) manages to imitate flexoelectricity (polarization generated by strain gradient) in typical beam-bending experiments, since in a bent beam the net strain is zero. In addition piezoelectricity changes sign under space inversion but giant flexoelectricity is insensitive to space inversion, seemingly contradicting a piezoelectric origin. Here we show that, if a piezoelectric material has its piezoelectric coefficient asymmetrically distributed across the sample, it will generate a nonzero bending-induced polarization impossible to distinguish from true flexoelectricity even by inverting the sample. The effective flexoelectric coefficient caused by piezoelectricity is functionally identical to, and often larger than, intrinsic flexoelectricity: our calculations show that, for standard perovskite ferroelectrics, even a tiny gradient of piezoelectricity (1% variation of piezoelectric coefficient across 1 mm) is sufficient to yield a giant effective flexoelectric coefficient of 1  μC/m, three orders of magnitude larger than the intrinsic expectation value.

[1]  Wenwu Cao,et al.  Characterization of piezoelectric materials using ultrasonic and resonant techniques , 1998, Medical Imaging.

[2]  M. Alexe,et al.  Flexo-photovoltaic effect , 2018, Science.

[3]  J. Scott,et al.  Strain-gradient-induced polarization in SrTiO3 single crystals. , 2007, Physical review letters.

[4]  A. S. Yurkov,et al.  Flexoelectric effect in finite samples , 2011, 1110.0380.

[5]  A. Tagantsev,et al.  Piezoelectricity and flexoelectricity in crystalline dielectrics. , 1986, Physical review. B, Condensed matter.

[6]  Zhong Lin Wang,et al.  Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics. , 2007, Nano letters.

[7]  L. Eric Cross,et al.  Flexoelectricity of barium titanate , 2006 .

[8]  A. Tagantsev,et al.  Electric polarization in crystals and its response to thermal and elastic perturbations , 1991 .

[9]  Dragan Damjanovic,et al.  Flexoelectricity in Bones , 2018, Advanced materials.

[10]  K. Chu,et al.  Nonlinear flexoelectricity in noncentrosymmetric crystals , 2017, 1702.02740.

[11]  D. Tian,et al.  Large Flexoelectriclike Response from the Spontaneously Polarized Surfaces in Ferroelectric Ceramics. , 2018, Physical review letters.

[12]  G. Catalan,et al.  Origin of the enhanced flexoelectricity of relaxor ferroelectrics , 2013, 1312.5870.

[13]  M. Grimsditch,et al.  The elastic and electromechanical properties of tetragonal BaTiO3 single crystals , 1991 .

[14]  Jan G. Smits,et al.  The constituent equations of piezoelectric bimorphs , 1991 .

[15]  Pavlo Zubko,et al.  Flexoelectric Effect in Solids , 2013 .

[16]  Andrew G. Glen,et al.  APPL , 2001 .

[17]  Irene Arias,et al.  Fracture toughening and toughness asymmetry induced by flexoelectricity , 2015, Physical Review B.

[18]  L. Eric Cross,et al.  Flexoelectric polarization of barium strontium titanate in the paraelectric state , 2002 .

[19]  M. Stengel Surface control of flexoelectricity , 2014, 1402.2121.

[20]  A. Bratkovsky,et al.  Unusual flexoelectric effect in two-dimensional noncentrosymmetric sp2-bonded crystals. , 2009, Physical review letters.

[21]  L. Eric Cross,et al.  Large flexoelectric polarization in ceramic lead magnesium niobate , 2001 .

[22]  L. Eric Cross,et al.  Flexure mode flexoelectric piezoelectric composites , 2009 .

[23]  W. Williams Piezoelectric effects in biological materials , 1982 .

[24]  L. E. Cross,et al.  Gradient scaling phenomenon in microsize flexoelectric piezoelectric composites , 2007 .

[25]  Lauren M. Garten,et al.  Enhanced flexoelectricity through residual ferroelectricity in barium strontium titanate , 2015 .

[26]  S. Saremi,et al.  Large Flexoelectric Anisotropy in Paraelectric Barium Titanate. , 2015, Physical review letters.

[27]  Tahir Cagin,et al.  Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect , 2008 .

[28]  Piezoelectricity and inhomogeneity in ceramics, polymers and bone , 1983 .

[29]  A. Gruverman,et al.  Supplementary Materials for Mechanical Writing of Ferroelectric Polarization , 2012 .

[30]  A. Tagantsev,et al.  Fundamentals of flexoelectricity in solids , 2013, Nanotechnology.

[31]  Jacob L. Jones,et al.  Breaking of macroscopic centric symmetry in paraelectric phases of ferroelectric materials and implications for flexoelectricity. , 2014, Nature materials.

[32]  F. Peeters,et al.  Static flexural modes and piezoelectricity in 2D and layered crystals , 2016 .

[33]  Hong Wang,et al.  Enhanced direct flexoelectricity in paraelectric phase of Ba(Ti0.87Sn0.13)O3 ceramics , 2013 .

[34]  Xi-Qiao Feng,et al.  Effect of surface stresses on the vibration and buckling of piezoelectric nanowires , 2010 .

[35]  Liying Jiang,et al.  Flexoelectric effect on the electroelastic responses of bending piezoelectric nanobeams , 2013 .

[36]  Umesh Kumar Bhaskar,et al.  A flexoelectric microelectromechanical system on silicon. , 2016, Nature nanotechnology.

[37]  Michael C. McAlpine,et al.  Nanoscale Flexoelectricity , 2013, Advanced materials.

[38]  T. Cagin,et al.  Erratum: Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect [Phys. Rev. B 77 , 125424 (2008)] , 2009 .

[39]  L. Eric Cross,et al.  Flexoelectric effects: Charge separation in insulating solids subjected to elastic strain gradients , 2006 .

[40]  Adv , 2019, International Journal of Pediatrics and Adolescent Medicine.

[41]  Guy de Villers Sens , 2019, Vocabulaire des histoires de vie et de la recherche biographique.

[42]  Wenyi Zhu,et al.  Piezoelectric composite based on the enhanced flexoelectric effects , 2006 .

[43]  J. Narváez,et al.  Enhanced flexoelectric-like response in oxide semiconductors , 2016, Nature.

[44]  I. Starkov,et al.  Impact of the flexocaloric effect on polarization in the flexoelectric layer , 2016 .

[45]  Xiaoning Jiang,et al.  Flexoelectricity in barium strontium titanate thin film , 2014 .

[46]  J. Sort,et al.  Ferroelectrics as Smart Mechanical Materials , 2017, Advanced materials.

[47]  L. Eric Cross,et al.  Flexoelectric effect in ceramic lead zirconate titanate , 2005 .