A Maximum Enhancing Higher‐Order Tensor Glyph

Glyphs are a fundamental tool in tensor visualization, since they provide an intuitive geometric representation of the full tensor information. The Higher‐Order Maximum Enhancing (HOME) glyph, a generalization of the second‐order tensor ellipsoid, was recently shown to emphasize the orientational information in the tensor through a pointed shape around maxima. This paper states and formally proves several important properties of this novel glyph, presents its first three‐dimensional implementation, and proposes a new coloring scheme that reflects peak direction and sharpness. Application to data from High Angular Resolution Diffusion Imaging (HARDI) shows that the method allows for interactive data exploration and confirms that the HOME glyph conveys fiber spread and crossings more effectively than the conventional polar plot.

[1]  H. Piaggio Differential Geometry of Curves and Surfaces , 1952, Nature.

[2]  K. A. Semendyayev,et al.  Handbook of mathematics , 1985 .

[3]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[4]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[5]  Gabriel Taubin,et al.  Estimating the tensor of curvature of a surface from a polyhedral approximation , 1995, Proceedings of IEEE International Conference on Computer Vision.

[6]  Pierre Comon,et al.  Decomposition of quantics in sums of powers of linear forms , 1996, Signal Process..

[7]  William M. Wells,et al.  Medical Image Computing and Computer-Assisted Intervention — MICCAI’98 , 1998, Lecture Notes in Computer Science.

[8]  Carl-Fredrik Westin,et al.  Image Processing for Diffusion Tensor Magnetic Resonance Imaging , 1999, MICCAI.

[9]  Sinisa Pajevic,et al.  Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: Application to white matter fiber tract mapping in the human brain , 1999, Magnetic resonance in medicine.

[10]  Phillip A. Regalia,et al.  On the Best Rank-1 Approximation of Higher-Order Supersymmetric Tensors , 2001, SIAM J. Matrix Anal. Appl..

[11]  Stefan Gumhold,et al.  Splatting Illuminated Ellipsoids with Depth Correction , 2003, VMV.

[12]  T. Mareci,et al.  Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging , 2003, Magnetic resonance in medicine.

[13]  Valerio Pascucci,et al.  Morse-smale complexes for piecewise linear 3-manifolds , 2003, SCG '03.

[14]  Y. Hashash,et al.  Glyph and hyperstreamline representation of stress and strain tensors and material constitutive response , 2003 .

[15]  Alan Connelly,et al.  Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution , 2004, NeuroImage.

[16]  Gérard G. Medioni,et al.  First order augmentation to tensor voting for boundary inference and multiscale analysis in 3D , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Gordon Kindlmann,et al.  Superquadric tensor glyphs , 2004, VISSYM'04.

[18]  D. Tuch Q‐ball imaging , 2004, Magnetic resonance in medicine.

[19]  V. Rovenski,et al.  Differential Geometry of Curves and Surfaces: A Concise Guide , 2005 .

[20]  Gerik Scheuermann,et al.  HOT-lines: tracking lines in higher order tensor fields , 2005, VIS 05. IEEE Visualization, 2005..

[21]  Liqun Qi,et al.  Rank and eigenvalues of a supersymmetric tensor, the multivariate homogeneous polynomial and the algebraic hypersurface it defines , 2006, J. Symb. Comput..

[22]  V. Rovenski,et al.  Differential Geometry of Curves and Surfaces , 1952, Nature.

[23]  Tim Weyrich,et al.  Eurographics Symposium on Point-based Graphics (2006) Gpu-based Ray-casting of Quadratic Surfaces , 2022 .

[24]  Ketan Mehta,et al.  Superellipsoid-based, Real Symmetric Traceless Tensor Glyphs Motivated by Nematic Liquid Crystal Alignment Visualization , 2006, IEEE Transactions on Visualization and Computer Graphics.

[25]  Philip A. Cook,et al.  Exploiting peak anisotropy for tracking through complex structures , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[26]  Thomas R. Knösche,et al.  Parametric spherical deconvolution: Inferring anatomical connectivity using diffusion MR imaging , 2007, NeuroImage.

[27]  Paul M. Thompson,et al.  Visualization Tools for High Angular Resolution Diffusion Imaging , 2008, MICCAI.

[28]  Hans-Peter Seidel,et al.  Estimating Crossing Fibers: A Tensor Decomposition Approach , 2008, IEEE Transactions on Visualization and Computer Graphics.

[29]  Gene H. Golub,et al.  Symmetric Tensors and Symmetric Tensor Rank , 2008, SIAM J. Matrix Anal. Appl..

[30]  Carl-Fredrik Westin,et al.  Sampling and Visualizing Creases with Scale-Space Particles , 2009, IEEE Transactions on Visualization and Computer Graphics.

[31]  Rachid Deriche,et al.  Deterministic and Probabilistic Tractography Based on Complex Fibre Orientation Distributions , 2009, IEEE Transactions on Medical Imaging.

[32]  Bart M. ter Haar Romeny,et al.  Fast and sleek glyph rendering for interactive HARDI data exploration , 2009, 2009 IEEE Pacific Visualization Symposium.

[33]  Hans-Peter Seidel,et al.  A Higher-Order Structure Tensor , 2009 .