O2 A-band line parameters to support atmospheric remote sensing

Numerous satellite and ground-based remote sensing measurements rely on the ability to calculate O_2 A-band [b^1Σ_g^+←X^3Σ_g^−(0,0)] spectra from line parameters, with combined relative uncertainties below 0.5% required for the most demanding applications. In this work, we combine new ^(16)O_2 A-band R-branch measurements with our previous P-branch observations, both of which are based upon frequency-stabilized cavity ring-down spectroscopy. The combined set of data spans angular momentum quantum number, J′ up to 46. For these measurements, we quantify a J-dependent quadratic deviation from a standard model of the rotational distribution of the line intensities. We provide calculated transition wave numbers, and intensities for J′ up to 60. The calculated line intensities are derived from a weighted fit of the generalized model to an ensemble of data and agree with our measured values to within 0.1% on average, with a relative standard deviation of ≈0.3%. We identify an error in the calculated frequency dependence of the O_2 A-band line intensities in existing spectroscopic databases. Other reported lineshape parameters include a revised set of ground-state energies, self- and air-pressure-broadening coefficients and self- and air-Dicke-narrowing coefficients. We also report a band-integrated intensity at 296 K of 2.231(7)×10^(−22) cm molec^(−1) and Einstein-A coefficient of 0.0869(3) s^(−1).

[1]  D. O'Brien,et al.  High-Precision, High-Resolution Measurements of Absorption in the Oxygen A-Band , 1997 .

[2]  G. Millot,et al.  High-resolution stimulated Raman spectroscopy of O2 , 1992 .

[3]  Experimental line parameters of the b1 Sigma(g)+ <-- X3 Sigma(g)- band of oxygen isotopologues at 760 nm using frequency-stabilized cavity ring-down spectroscopy. , 2009, The journal of physical chemistry. A.

[4]  R. F. Wallis,et al.  Influence of Vibration‐Rotation Interaction on Line Intensities in Vibration‐Rotation Bands of Diatomic Molecules , 1955 .

[5]  Peter F. Bernath,et al.  Speed-dependent Voigt profile for water vapor in infrared remote sensing applications , 2007 .

[6]  Daniel Hurtmans,et al.  Nitrogen-broadened lineshapes in the oxygen A-band: Experimental results and theoretical calculations , 2008 .

[7]  L. Brown,et al.  Experimental intensity and lineshape parameters of the oxygen A-band using frequency-stabilized cavity ring-down spectroscopy , 2008 .

[8]  R. Ciuryło,et al.  Multispectrum Fits of Ar-Broadened HF with a Generalized Asymmetric Lineshape: Effects of Correlation, Hardness, Speed Dependence, and Collision Duration , 2001 .

[9]  J. Bouanich,et al.  On the use of Herman–Wallis factors for diatomic molecules , 2001 .

[10]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[11]  D. Romanini,et al.  CW cavity ring down spectroscopy , 1997 .

[12]  Andrew K. Heidinger,et al.  Molecular Line Absorption in a Scattering Atmosphere. Part II: Application to Remote Sensing in the O2 A band , 2000 .

[13]  James R. Drummond,et al.  Measurements of the O2 A- and B-bands for determining temperature and pressure profiles from ACE–MAESTRO: Forward model and retrieval algorithm , 2007 .

[14]  J. Hodges,et al.  Response of a ring-down cavity to an arbitrary excitation , 1996 .

[15]  J. Hodges,et al.  Line shapes and intensities of self-broadened O{sub 2} b {sup 1{Sigma}}{sub g}{sup +}({nu}=1)(leftarrow)X {sup 3{Sigma}}{sub g}{sup -}({nu}=0) band transitions measured by cavity ring-down spectroscopy , 2010 .

[16]  J. H. Miller,et al.  Development of a cw-laser-based cavity-ringdown sensor aboard a spacecraft for trace air constituents , 2002, Applied physics. B, Lasers and optics.

[17]  Stanley P. Sander,et al.  Ground-based photon path measurements from solar absorption spectra of the O2 A-band , 2005 .

[18]  L. Giver,et al.  Intensity measurements and rotational intensity distribution for the oxygen A-band , 1969 .

[19]  J. Drummond,et al.  Dicke-narrowed spectral line shapes of CO in Ar: Experimental results and a revised interpretation , 2006 .

[20]  Daniele Romanini,et al.  Diode laser cavity ring down spectroscopy , 1997 .

[21]  J. Hodges,et al.  Comparison of semiclassical line-shape models to rovibrational H2O spectra measured by frequency-stabilized cavity ring-down spectroscopy , 2006 .

[22]  Franz Schreier,et al.  The GEISA spectroscopic database: Current and future archive for Earth and planetary atmosphere studies , 2008 .

[23]  J. Hodges,et al.  Automated high-resolution frequency-stabilized cavity ring-down absorption spectrometer , 2005 .

[24]  J. Watson Rotational line intensities in 3Σ–1Σ electronic transitions , 1968 .

[25]  J. Watson Quadratic Herman-Wallis factors in the fundamental bands of linear molecules , 1987 .

[26]  J. Hodges,et al.  Laser bandwidth effects in quantitative cavity ring-down spectroscopy. , 1996, Applied optics.

[27]  May,et al.  Testing Lineshape Models: Measurements for v = 1-0 CO Broadened by He and Ar , 1997, Journal of molecular spectroscopy.

[28]  V. Malathy Devi,et al.  Spectroscopic challenges for high accuracy retrievals of atmospheric CO2 and the Orbiting Carbon Observatory (OCO) experiment , 2005 .

[29]  Laurence S. Rothman,et al.  The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001 , 2003 .

[30]  D. Hurtmans,et al.  Spectroscopic lineshape study of the self-perturbed oxygen A-band , 2008 .

[31]  L. Brown,et al.  High-accuracy transition frequencies for the O2 A-band , 2008 .

[32]  Pressure-Shift of the (0,0) and (1,0) Bands of the Oxygen[formula]Transition from Fourier Transform Spectroscopy , 1995 .

[33]  F. Chaussard,et al.  Collisional effects on spectral line shape from the Doppler to the collisional regime: A rigorous test of a unified model , 2000 .

[34]  P L Varghese,et al.  Collisional narrowing effects on spectral line shapes measured at high resolution. , 1984, Applied optics.

[35]  Kelly Chance,et al.  IMPROVEMENT OF THE O2 A BAND SPECTROSCOPIC DATABASE FOR SATELLITE-BASED CLOUD DETECTION , 1997 .

[36]  H. Babcock,et al.  No. 750. Fine structure of the red system of atmospheric oxygen bands. , 1948 .

[37]  Ilse Aben,et al.  Surface pressure retrieval from SCIAMACHY measurements in the O 2 A Band: validation of the measurements and sensitivity on aerosols , 2005 .

[38]  L. Thomason,et al.  SAGE III aerosol extinction measurements: Initial results , 2003 .

[39]  V Masato Yokomizo,et al.  Greenhouse gases Observing SATellite (GOSAT) Ground Systems , 2008 .

[40]  R. M. Mitchell,et al.  Airborne Measurements of Air Mass from O2 A-Band Absorption Spectra , 1998 .

[41]  J. Hodges,et al.  Ultra-sensitive optical measurements of high-J transitions in the O2 A-band , 2009 .

[42]  S. Mikhailenko,et al.  High sensitivity CW-cavity ring down spectroscopy of water in the region of the 1.5 μm atmospheric window , 2004 .

[43]  Kevin K. Lehmann,et al.  The superposition principle and cavity ring-down spectroscopy , 1996 .

[44]  Franz Schreier,et al.  The 2003 edition of the GEISA/IASI spectroscopic database , 2005 .

[45]  Laurence S. Rothman,et al.  IMPROVED SPECTRAL PARAMETERS FOR THE THREE MOST ABUNDANT ISOTOPOMERS OF THE OXYGEN MOLECULE , 1998 .

[46]  J. Hodges,et al.  Frequency-stabilized single-mode cavity ring-down apparatus for high-resolution absorption spectroscopy , 2004 .

[47]  Joseph T. Hodges,et al.  High-resolution cavity ring-down spectroscopy measurements of blended H2O transitions , 2007 .

[48]  R. M. Mitchell,et al.  Error Estimates for Retrieval of Cloud-Top Pressure Using Absorption in the A Band of Oxygen , 1992 .

[49]  David A. Newnham,et al.  Pressure-shift measurements of the oxygen A-band by Fourier-transform spectroscopy , 2003 .

[50]  L. Galatry,et al.  Simultaneous Effect of Doppler and Foreign Gas Broadening on Spectral Lines , 1961 .

[51]  Marco Cervino,et al.  Aerosol extinction coefficient profile retrieval in the oxygen A-band considering multiple scattering atmosphere. Test case : SCIAMACHY nadir simulated measurements , 2006 .

[52]  Brown,et al.  Experimental Line Parameters of the Oxygen A Band at 760 nm. , 2000, Journal of molecular spectroscopy.

[53]  David Crisp,et al.  Precision requirements for space-based XCO2 data , 2007 .

[54]  H. Pickett,et al.  Laboratory measurements and theoretical calculations of O_2 A band electric quadrupole transitions , 2009 .

[55]  Kachanov,et al.  Intensity Measurements and Collision-Broadening Coefficients for the Oxygen A Band Measured by Intracavity Laser Absorption Spectroscopy. , 2000, Journal of molecular spectroscopy.

[56]  Laurence S. Rothman,et al.  The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation) , 1998, Defense, Security, and Sensing.

[57]  C. F. Curtiss,et al.  Molecular Theory Of Gases And Liquids , 1954 .

[58]  R. Dicke The effect of collisions upon the Doppler width of spectral lines , 1953 .

[59]  Richard C. M. Learner,et al.  PRECISE LINE PARAMETERS AND TRANSITION PROBABILITY OF THE ATMOSPHERIC A BAND OF MOLECULAR OXYGEN 16O2 , 1999 .

[60]  A. Castrillo,et al.  The line shape problem in the near-infrared spectrum of self-colliding CO2 molecules: experimental investigation and test of semiclassical models. , 2009, The Journal of chemical physics.

[61]  K. J. Ritter,et al.  High-resolution spectroscopy of the oxygen A band , 1987 .

[62]  T. Balasubramanian,et al.  Magnetic dipole and electric quadrupole line strengths for the atomospheric oxygen (b1Σg+−X3Σg−) system , 1994 .

[63]  M. Quack,et al.  High-resolution Fourier transform infrared and cw-diode laser cavity ringdown spectroscopy of the ν2+2ν3 band of methane near 7510 cm−1 in slit jet expansions and at room temperature , 2002 .

[64]  J. Hodges,et al.  High-Precision Pressure Shifting Measurement Technique Using Frequency-Stabilized Cavity Ring-Down Spectroscopy , 2008 .