A Temperature-Sensitive Mutation in the dnaE Gene of Caulobacter crescentus That Prevents Initiation of DNA Replication but Not Ongoing Elongation of DNA

ABSTRACT A genetic screen for cell division cycle mutants of Caulobacter crescentus identified a temperature-sensitive DNA replication mutant. Genetic complementation experiments revealed a mutation within the dnaE gene, encoding the α-catalytic subunit of DNA polymerase III holoenzyme. Sequencing of the temperature-sensitive dnaE allele indicated a single base pair substitution resulting in a change from valine to glutamic acid within the C-terminal portion of the protein. This mutation lies in a region of the DnaE protein shown in Escherichia coli, to be important in interactions with other essential DNA replication proteins. Using DNA replication assays and fluorescence flow cytometry, we show that the observed block in DNA synthesis in the Caulobacter dnaE mutant strain occurs at the initiation stage of replication and that there is also a partial block of DNA elongation.

[1]  Y. Brun,et al.  DNA replication initiation is required for mid‐cell positioning of FtsZ rings in Caulobacter crescentus , 2002, Molecular microbiology.

[2]  G. Marczynski,et al.  Physiological consequences of blocked Caulobacter crescentus dnaA expression, an essential DNA replication gene , 2001, Molecular microbiology.

[3]  Ian T. Paulsen,et al.  Complete genome sequence of Caulobacter crescentus , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[4]  A. Pritchard,et al.  A novel assembly mechanism for the DNA polymerase III holoenzyme DnaX complex: association of δδ′ with DnaX4 forms DnaX3δδ′ , 2000 .

[5]  F. Taddei,et al.  No Genetic Barriers between Salmonella enterica Serovar Typhimurium and Escherichia coli in SOS-Induced Mismatch Repair-Deficient Cells , 2000, Journal of bacteriology.

[6]  Y. Brun,et al.  CtrA mediates a DNA replication checkpoint that prevents cell division in Caulobacter crescentus , 2000, The EMBO journal.

[7]  F. Flett,et al.  A ‘Gram‐negative‐type’ DNA polymerase III is essential for replication of the linear chromosome of Streptomyces coelicolor A3(2) , 1999, Molecular microbiology.

[8]  C. McHenry,et al.  The χψ Subunits of DNA Polymerase III Holoenzyme Bind to Single-stranded DNA-binding Protein (SSB) and Facilitate Replication of an SSB-coated Template* , 1998, The Journal of Biological Chemistry.

[9]  Z. Kelman,et al.  Devoted to the lagging strand—the χ subunit of DNA polymerase III holoenzyme contacts SSB to promote processive elongation and sliding clamp assembly , 1998, The EMBO journal.

[10]  A. Pritchard,et al.  Localization of the active site of the alpha subunit of the Escherichia coli DNA polymerase III holoenzyme , 1997, Journal of bacteriology.

[11]  M. O’Donnell,et al.  Replisome Assembly Reveals the Basis for Asymmetric Function in Leading and Lagging Strand Replication , 1996, Cell.

[12]  C. McHenry,et al.  τCouples the Leading- and Lagging-strand Polymerases at the Escherichia coli DNA Replication Fork* , 1996, The Journal of Biological Chemistry.

[13]  C. McHenry,et al.  Biotin Tagging Deletion Analysis of Domain Limits Involved in Protein-Macromolecular Interactions , 1996, The Journal of Biological Chemistry.

[14]  C. McHenry,et al.  Identification of the β-binding Domain of the α Subunit of Escherichia coli Polymerase III Holoenzyme* , 1996, The Journal of Biological Chemistry.

[15]  Y. Brun,et al.  Cell cycle regulation and cell type-specific localization of the FtsZ division initiation protein in Caulobacter. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[16]  C. McHenry,et al.  Coupling of a Replicative Polymerase and Helicase: A τ–DnaB Interaction Mediates Rapid Replication Fork Movement , 1996, Cell.

[17]  H G Dallmann,et al.  DnaX Complex of Escherichia coli DNA Polymerase III Holoenzyme , 1995, The Journal of Biological Chemistry.

[18]  H G Dallmann,et al.  DnaX Complex of Escherichia coli DNA Polymerase III Holoenzyme THE χ·ψ , 1995, The Journal of Biological Chemistry.

[19]  C. McHenry,et al.  DnaX Complex of Escherichia coli DNA Polymerase III Holoenzyme , 1995, The Journal of Biological Chemistry.

[20]  E. Winzeler,et al.  Use of flow cytometry to identify a Caulobacter 4.5 S RNA temperature-sensitive mutant defective in the cell cycle. , 1995, Journal of molecular biology.

[21]  M. O’Donnell,et al.  Assembly of a Chromosomal Replication Machine: Two DNA Polymerases, a Clamp Loader, and Sliding Clamps in One Holoenzyme Particle. , 1995, The Journal of Biological Chemistry.

[22]  M. O’Donnell,et al.  Assembly of a Chromosomal Replication Machine: Two DNA Polymerases, a Clamp Loader, and Sliding Clamps in One Holoenzyme Particle. , 1995, The Journal of Biological Chemistry.

[23]  J. Gober,et al.  Regulation of cellular differentiation in Caulobacter crescentus , 1995, Microbiological reviews.

[24]  J. Gober,et al.  Regulation of cellular differentiation in Caulobacter crescentus , 1995 .

[25]  H. Erickson,et al.  FtsZ, a prokaryotic homolog of tubulin? , 1995, Cell.

[26]  R. Roop,et al.  pBBR1MCS: a broad-host-range cloning vector. , 1994, BioTechniques.

[27]  M. O’Donnell,et al.  holE, the gene coding for the theta subunit of DNA polymerase III of Escherichia coli: characterization of a holE mutant and comparison with a dnaQ (epsilon-subunit) mutant , 1994, Journal of bacteriology.

[28]  J. Lutkenhaus FtsZ ring in bacterial cytokinesis , 1993, Molecular microbiology.

[29]  R. Aebersold,et al.  Isolation, sequencing and overexpression of the gene encoding the theta subunit of DNA polymerase III holoenzyme. , 1993, Nucleic acids research.

[30]  M. O’Donnell,et al.  DNA polymerase III accessory proteins. II. Characterization of delta and delta'. , 1993, The Journal of biological chemistry.

[31]  M. O’Donnell,et al.  DNA polymerase III accessory proteins. V. Theta encoded by holE. , 1993, The Journal of biological chemistry.

[32]  A. Kornberg,et al.  Opening of the replication origin of Escherichia coli by DnaA protein with protein HU or IHF. , 1992, The Journal of biological chemistry.

[33]  D. Lilley,et al.  DNA replication, 2nd edn , 1992 .

[34]  John Kuriyan,et al.  Three-dimensional structure of the β subunit of E. coli DNA polymerase III holoenzyme: A sliding DNA clamp , 1992, Cell.

[35]  L. Shapiro,et al.  Genetic analysis of a temporally transcribed chemotaxis gene cluster in Caulobacter crescentus. , 1991, Genetics.

[36]  M. O’Donnell,et al.  Mechanism of the sliding beta-clamp of DNA polymerase III holoenzyme. , 1991, The Journal of biological chemistry.

[37]  W. Messer,et al.  Localized DNA melting and structural pertubations in the origin of replication, oriC, of Escherichia coli in vitro and in vivo. , 1991, The EMBO journal.

[38]  A. Newton,et al.  Cloning and cell cycle-dependent expression of DNA replication gene dnaC from Caulobacter crescentus , 1990, Journal of bacteriology.

[39]  L. Shapiro,et al.  Plasmid and chromosomal DNA replication and partitioning during the Caulobacter crescentus cell cycle. , 1990, Journal of molecular biology.

[40]  M. O’Donnell,et al.  Processive replication is contingent on the exonuclease subunit of DNA polymerase III holoenzyme. , 1990, The Journal of biological chemistry.

[41]  H. Maki,et al.  DNA Polymerase III holoenzyme of Escherichia coli. IV. The holoenzyme is an asymmetric dimer with twin active sites. , 1988, The Journal of biological chemistry.

[42]  A. Kornberg,et al.  Duplex opening by dnaA protein at novel sequences in initiation of replication at the origin of the E. coli chromosome , 1988, Cell.

[43]  H. Tomasiewicz,et al.  Sequence analysis of the Escherichia coli dnaE gene , 1987, Journal of bacteriology.

[44]  T. Baker,et al.  In vitro assembly of a prepriming complex at the origin of the Escherichia coli chromosome. , 1987, The Journal of biological chemistry.

[45]  T. Baker,et al.  Helicase action of dnaB protein during replication from the Escherichia coli chromosomal origin in vitro. , 1987, The Journal of biological chemistry.

[46]  T. Baker,et al.  Complete enzymatic replication of plasmids containing the origin of the Escherichia coli chromosome. , 1986, The Journal of biological chemistry.

[47]  H. Maki,et al.  The polymerase subunit of DNA polymerase III of Escherichia coli. I. Amplification of the dnaE gene product and polymerase activity of the alpha subunit. , 1985, The Journal of biological chemistry.

[48]  R. Scheuermann,et al.  A separate editing exonuclease for DNA replication: the epsilon subunit of Escherichia coli DNA polymerase III holoenzyme. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Arthur Kornberg,et al.  The dnaA protein complex with the E. coli chromosomal replication origin (oriC) and other DNA sites , 1984, Cell.

[50]  A. Kornberg,et al.  Replication initiated at the origin (oriC) of the E. coli chromosome reconstituted with purified enzymes , 1984, Cell.

[51]  M. Welch,et al.  Cloning and identification of the product of the dnaE gene of Escherichia coli , 1982, Journal of bacteriology.

[52]  M. Osley,et al.  Temporal control of the cell cycle in Caulobacter crescentus: roles of DNA chain elongation and completion. , 1980, Journal of molecular biology.

[53]  C S McHenry,et al.  DNA polymerase III of Escherichia coli. Purification and identification of subunits. , 1979, The Journal of biological chemistry.

[54]  J. Poindexter Selection for nonbuoyant morphological mutants of Caulobacter crescentus , 1978, Journal of bacteriology.

[55]  N. Agabian,et al.  Envelope-associated nucleoid from Caulobacter crescentus stalked and swarmer cells , 1977, Journal of bacteriology.

[56]  A. Kornberg,et al.  DNA polymerase III holoenzyme of Escherichia coli. Purification and resolution into subunits. , 1977, The Journal of biological chemistry.

[57]  R. C. Johnson,et al.  Isolation of spontaneously derived mutants of Caulobacter crescentus. , 1977, Genetics.

[58]  A. Allison Purine and pyrimidine metabolism , 1976, Nature.

[59]  A. Newton,et al.  Dependence of Cell Division on the Completion of Chromosome Replication in Caulobacter crescentus , 1972, Journal of bacteriology.

[60]  A. Newton,et al.  Chromosome replication during development in Caulobacter crescentus. , 1972, Journal of molecular biology.

[61]  Z. Kelman,et al.  DNA polymerase III holoenzyme: structure and function of a chromosomal replicating machine. , 1995, Annual review of biochemistry.

[62]  Miklós Müller,et al.  Biochemistry and Molecular Biology of Parasites , 1995 .

[63]  L. Shapiro,et al.  The expression of asymmetry during Caulobacter cell differentiation. , 1994, Annual review of biochemistry.

[64]  C. McHenry DNA polymerase III holoenzyme of Escherichia coli. , 1988, Annual review of biochemistry.

[65]  A. Pühler,et al.  A Broad Host Range Mobilization System for In Vivo Genetic Engineering: Transposon Mutagenesis in Gram Negative Bacteria , 1983, Bio/Technology.

[66]  M. Osley,et al.  Mutational analysis of developmental control in Caulobacter crescentus. , 1977, Proceedings of the National Academy of Sciences of the United States of America.