Anatomy of μc-Si thin films by plasma enhanced chemical vapor deposition: An investigation by spectroscopic ellipsometry

A detailed analysis of the anatomy of microcrystalline (μc-Si) films deposited by plasma enhanced chemical vapor deposition from both SiF4–H2 and SiH4–H2 mixtures is performed by spectroscopic ellipsometry (SE). Specifically, the μc-Si film anatomy consists of an interface layer at the substrate/μc-Si bulk layer, a bulk μc-Si layer, and a surface porous layer. All these layers have their own microstructures, which need to be highlighted, since it is this overall anatomy which determines the optical properties of μc-Si films. The ability of SE to discriminate the complex microstructure of μc-Si thin films is emphasized also by the comparison with the x-ray diffraction data which cannot provide unambiguous information regarding the distribution of the crystalline and the amorphous phases along the μc-Si film thickness. Through the description of the μc-Si film anatomy, information on the effect of the growth precursors (SiF4 or SiH4) and of the substrate (c-Si or Corning glass) on the growth dynamics can be...

[1]  T. Kamiya,et al.  Control of orientation from random to (220) or (400) in polycrystalline silicon films , 1999 .

[2]  H. Nguyen,et al.  Preparation of ultrathin microcrystalline silicon layers by atomic hydrogen etching of amorphous silicon and end‐point detection by real time spectroellipsometry , 1994 .

[3]  S. Logothetidis Surface‐roughness and grain‐boundary effects on the optical properties of low‐pressure chemical‐vapor‐deposited silicon thin films by spectroscopic ellipsometry , 1989 .

[4]  Matthew F. Chisholm,et al.  Optical functions of chemical vapor deposited thin‐film silicon determined by spectroscopic ellipsometry , 1993 .

[5]  H. Fujiwara,et al.  Real time spectroscopic ellipsometry for characterization of the crystallization of amorphous silicon by thermal annealing , 1998 .

[6]  G. Kiriakidis,et al.  Optical properties and structure of microcrystalline hydrogenated silicon prepared by radio‐frequency magnetron sputtering , 1988 .

[7]  J. Andreu,et al.  New features of the layer‐by‐layer deposition of microcrystalline silicon films revealed by spectroscopic ellipsometry and high resolution transmission electron microscopy , 1996 .

[8]  K. Tachibana,et al.  In Situ Ellipsometric Monitoring of the Growth of Polycrystalline Silicon Thin Films by RF Plasma Chemical Vapor Deposition , 1994 .

[9]  Bernard Drevillon,et al.  In situ spectroscopic ellipsometry study of the growth of microcrystalline silicon , 1986 .

[10]  P. Capezzuto,et al.  Plasma enhanced chemical vapor deposition of nanocrystalline silicon films from SiF4-H2-He at low temperature , 1999 .

[11]  I. Gregora,et al.  Applicability of Raman scattering for the characterization of nanocrystalline silicon , 1999 .

[12]  T. Lohner,et al.  Comparative study of polysilicon-on-oxide using spectroscopic ellipsometry, atomic force microscopy, and transmission electron microscopy , 1998 .

[13]  B. Drévillon,et al.  In situ spectroellipsometry study of the nucleation and growth of microcrystalline silicon , 1991 .

[14]  H. Gamble,et al.  Polycrystalline silicon film growth in a SiF4/SiH4/H2 plasma , 1999 .

[15]  A. A. Studna,et al.  Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV , 1983 .

[16]  É. Bustarret,et al.  Experimental determination of the nanocrystalline volume fraction in silicon thin films from Raman spectroscopy , 1988 .

[17]  D. He,et al.  Preparation of High-Quality Microcrystalline Silicon from Fluorinated Precursors by a Layer-by-Layer Technique , 1993 .

[18]  K. Fujimoto,et al.  In-Situ Chemically Cleaning Poly-Si Growth at Low Temperature , 1992 .

[19]  G. Bruno,et al.  Plasma deposition of amorphous silicon-based materials , 1995 .

[20]  S. Wagner,et al.  Plasma-enhanced chemical vapor deposition of intrinsic microcrystalline silicon from chlorine-containing source gas , 1998 .

[21]  A. Clark,et al.  An ellipsometry study of a hydrogenated amorphous silicon based n‐i structure , 1985 .

[22]  H. Fujiwara,et al.  Real time spectroscopic ellipsometry studies of the nucleation and growth of p-type microcrystalline silicon films on amorphous silicon using B2H6, B(CH3)3 and BF3 dopant source gases , 1999 .

[23]  E. Irene,et al.  Real time investigation of nucleation and growth of silicon on silicon dioxide using silane and disilane in a rapid thermal processing system , 1996 .

[24]  Keiichi Yamamoto,et al.  Raman scattering from gas-evaporated silicon small particles , 1984 .

[25]  Aspnes,et al.  Anisotropies in the above-bandgap optical spectra of cubic semiconductors. , 1985, Physical review letters.

[26]  Hiroyuki Fujiwara,et al.  Optimization of hydrogenated amorphous silicon p–i–n solar cells with two-step i layers guided by real-time spectroscopic ellipsometry , 1998 .

[27]  S. Logothetidis,et al.  Study of the optical transitions in poly- and micro-crystalline Si by spectroscopic ellipsometry , 1988 .

[28]  A. C. Adams,et al.  Optical properties of low‐pressure chemically vapor deposited silicon over the energy range 3.0–6.0 eV , 1981 .

[29]  S. Hamma,et al.  In situ correlation between the optical and electrical properties of thin intrinsic and n-type microcrystalline silicon films , 1997 .

[30]  B. Drévillon,et al.  Microcrystalline silicon growth by the layer-by-layer technique: long term evolution and nucleation mechanisms , 1996 .

[31]  M. Gemmi,et al.  Plasma-enhanced chemical vapour deposition of microcrystalline silicon: On the dynamics of the amorphous-microcrystalline interface by optical methods , 2000 .

[32]  A. Matsuda Growth mechanism of microcrystalline silicon obtained from reactive plasmas , 1999 .

[33]  S. Hamma,et al.  Low temperature growth of highly crystallized silicon thin films using hydrogen and argon dilution , 1998 .