The Hole Role in Solid-State Imagers

The importance of holes present in the pixels of solid-state image sensors is described by Theuwissen et al. (IEDM Tech. Dig. 2005, p. 817). Today's success of digital imaging is based on the positive effect of an accumulation layer that reduces the interface-related dark current and dark current fixed-pattern noise. This superb imaging feature is applied in charge-coupled devices as well as in complementary metal-oxide-semiconductor devices, in consumer as well as in professional equipment. Holes are not only used to improve the dark performance of imagers; other examples of efficient use of holes are fixing electrostatic potentials, creating gate structures, draining photon-generated charges, and constructing antiblooming means

[1]  J.G.C. Bakker,et al.  A frame-transfer CCD color imager with vertical antiblooming , 1985, IEEE Transactions on Electron Devices.

[2]  N. Saks,et al.  A technique for suppressing dark current generated by interface states in buried channel CCD imagers , 1980, IEEE Electron Device Letters.

[3]  Marvin H. White,et al.  Characterization of surface channel CCD image arrays at low light levels , 1974 .

[4]  J. P. Lavine,et al.  The pinned photodiode for an interline-transfer CCD image sensor , 1984, 1984 International Electron Devices Meeting.

[5]  Toshiaki Sato,et al.  6.1 A 3.9µm Pixel Pitch VGA Format 10b Digital Image Sensor with 1.5-Transistor/Pixel , 2004 .

[6]  J. G. van Santen,et al.  High Density Frame Transfer Image Sensor , 1983 .

[7]  J. Hynecek,et al.  Virtual phase CCD technology , 1979, 1979 International Electron Devices Meeting.

[8]  Y. Matsunaga,et al.  An interline transfer CCD imager , 1984, 1984 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[9]  K. Yonemoto,et al.  A CMOS image sensor with a simple fixed-pattern-noise-reduction technology and a hole accumulation diode , 2000, IEEE Journal of Solid-State Circuits.

[10]  James R. Janesick Open Pinned-Phase CCD Technology , 1989, Optics & Photonics.

[11]  Motoaki Abe,et al.  A 380H × 488V CCD Imager with Narrow Channel Transfer Gates , 1979 .

[12]  T. Sato,et al.  A 3.9 /spl mu/m pixel pitch VGA format 10 b digital image sensor with 1.5-transistor/pixel , 2004, 2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519).

[14]  T. Kozono,et al.  A 1/3-in 270000 pixel CCD image sensor , 1991 .

[15]  K. Arai,et al.  No image lag photodiode structure in the interline CCD image sensor , 1982, 1982 International Electron Devices Meeting.

[16]  F. Shapiro,et al.  A 0.6 /spl mu/m CMOS pinned photodiode color imager technology , 1997, International Electron Devices Meeting. IEDM Technical Digest.

[17]  Shigeyuki Matsumoto,et al.  A 3.9-μm pixel pitch VGA format 10-b digital output CMOS image sensor with 1.5 transistor/pixel , 2004 .

[18]  W. Klaassens,et al.  Dark current reduction in very-large area CCD imagers for professional DSC applications , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[19]  Hirotatsu Kodama,et al.  A 1/3-in 270 000 pixel CCD image sensor , 1991 .

[20]  B. C. Burkey,et al.  A four million pixel CCD image sensor , 1990, ESSDERC '90: 20th European Solid State Device Research Conference.

[21]  Gloria G. Putnam,et al.  Photography with an 11-megapixel 35-mm format CCD , 2003, IS&T/SPIE Electronic Imaging.

[22]  J. Hynecek,et al.  Virtual phase technology: A new approach to fabrication of large-area CCD's , 1981, IEEE Transactions on Electron Devices.

[23]  A. Theuwissen,et al.  Solid-State Imaging with Charge-Coupled Devices , 1995 .