Unsupervised polarimetric synthetic aperture radar image classification based on sketch map and adaptive Markov random field

Abstract. Markov random field (MRF) model is an effective tool for polarimetric synthetic aperture radar (PolSAR) image classification. However, due to the lack of suitable contextual information in conventional MRF methods, there is usually a contradiction between edge preservation and region homogeneity in the classification result. To preserve edge details and obtain homogeneous regions simultaneously, an adaptive MRF framework is proposed based on a polarimetric sketch map. The polarimetric sketch map can provide the edge positions and edge directions in detail, which can guide the selection of neighborhood structures. Specifically, the polarimetric sketch map is extracted to partition a PolSAR image into structural and nonstructural parts, and then adaptive neighborhoods are learned for two parts. For structural areas, geometric weighted neighborhood structures are constructed to preserve image details. For nonstructural areas, the maximum homogeneous regions are obtained to improve the region homogeneity. Experiments are taken on both the simulated and real PolSAR data, and the experimental results illustrate that the proposed method can obtain better performance on both region homogeneity and edge preservation than the state-of-the-art methods.

[1]  Juhani Anttila Reinforcing Business Leaders' Role in Striving for Information Security , 2007 .

[2]  Emmanuel Trouvé,et al.  SEGMENTATION AND CLASSIFICATION OF POLARIMETRIC SAR DATA BASED ON THE KUMMERU DISTRIBUTION , 2009 .

[3]  Fang Liu,et al.  Local Maximal Homogeneous Region Search for SAR Speckle Reduction With Sketch-Based Geometrical Kernel Function , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Alejandro C. Frery,et al.  The polarimetric 𝒢 distribution for SAR data analysis , 2005 .

[5]  Jon Atli Benediktsson,et al.  SVM- and MRF-Based Method for Accurate Classification of Hyperspectral Images , 2010, IEEE Geoscience and Remote Sensing Letters.

[6]  Induced Semantics for Undirected Graphs: Another Look at the Hammersley‐Clifford Theorem , 2007 .

[7]  Jian Yang,et al.  Unsupervised Classification of Polarimetric SAR Images by EM Algorithm , 2007, IEICE Trans. Commun..

[8]  Haluk Derin,et al.  Modeling and Segmentation of Noisy and Textured Images Using Gibbs Random Fields , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  G. Barkó,et al.  Application of an artificial neural network (ANN) and piezoelectric chemical sensor array for identification of volatile organic compounds. , 1997, Talanta.

[10]  Maoguo Gong,et al.  A Novel Coarse-to-Fine Scheme for Automatic Image Registration Based on SIFT and Mutual Information , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[11]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Torbjørn Eltoft,et al.  Application of the Matrix-Variate Mellin Transform to Analysis of Polarimetric Radar Images , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[14]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[15]  Song-Chun Zhu,et al.  Primal sketch: Integrating structure and texture , 2007, Comput. Vis. Image Underst..

[16]  Siwei Chen,et al.  A NOVEL METHOD FOR POLARIMETRIC SAR IMAGE SPECKLE FILTERING AND EDGE DETECTION PI No . 345 , 2011 .

[17]  David Marr,et al.  VISION A Computational Investigation into the Human Representation and Processing of Visual Information , 2009 .

[18]  Ridha Touzi,et al.  Segmentation of textured polarimetric SAR scenes by likelihood approximation , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Xin Niu,et al.  An Adaptive Contextual SEM Algorithm for Urban Land Cover Mapping Using Multitemporal High-Resolution Polarimetric SAR Data , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[20]  Torbjørn Eltoft,et al.  Automatic PolSAR segmentation with the u-distribution and Markov Random Fields , 2012 .

[21]  Imdad Ali Rizvi,et al.  Comparison of CBF, ANN and SVM classifiers for object based classification of high resolution satellite images , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[22]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Tony F. Chan,et al.  Structure-Texture Image Decomposition—Modeling, Algorithms, and Parameter Selection , 2006, International Journal of Computer Vision.

[24]  Ron Kwok,et al.  Classification of multi-look polarimetric SAR imagery based on complex Wishart distribution , 1994 .

[25]  Silvana G. Dellepiane,et al.  Discontinuity adaptive MRF model for remote sensing image analysis , 1997, IGARSS'97. 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing - A Scientific Vision for Sustainable Development.

[26]  Konstantinos Papathanassiou,et al.  Speckle filtering and coherence estimation of polarimetric SAR interferometry data for forest applications , 2003, IEEE Trans. Geosci. Remote. Sens..

[27]  Josiane Zerubia,et al.  Unsupervised Amplitude and Texture Classification of SAR Images With Multinomial Latent Model , 2013, IEEE Transactions on Image Processing.

[28]  Lianru Gao,et al.  Adaptive Markov Random Field Approach for Classification of Hyperspectral Imagery , 2011, IEEE Geoscience and Remote Sensing Letters.

[29]  Stanley Osher,et al.  Image Decomposition and Restoration Using Total Variation Minimization and the H1 , 2003, Multiscale Model. Simul..

[30]  William K. Pratt,et al.  Digital Image Processing: PIKS Inside , 2001 .

[31]  Thomas L. Ainsworth,et al.  Unsupervised classification using polarimetric decomposition and the complex Wishart classifier , 1999, IEEE Trans. Geosci. Remote. Sens..

[32]  Jon Atli Benediktsson,et al.  Spectral–Spatial Classification of Hyperspectral Imagery Based on Partitional Clustering Techniques , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[33]  E. Pottier,et al.  Polarimetric Radar Imaging: From Basics to Applications , 2009 .

[34]  Rama Chellappa,et al.  Segmentation of polarimetric synthetic aperture radar data , 1992, IEEE Trans. Image Process..

[35]  David A. Clausi,et al.  ARRSI: Automatic Registration of Remote-Sensing Images , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[36]  T. Poggio,et al.  BOOK REVIEW David Marr’s Vision: floreat computational neuroscience VISION: A COMPUTATIONAL INVESTIGATION INTO THE HUMAN REPRESENTATION AND PROCESSING OF VISUAL INFORMATION , 2009 .

[37]  Hong Zhang,et al.  Change detection in urban areas with high resolution SAR images using second kind statistics based G0 distribution , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[38]  Gabriel Vasile,et al.  Hierarchical segmentation of Polarimetric SAR images using heterogeneous clutter models , 2009, 2009 IEEE International Geoscience and Remote Sensing Symposium.

[39]  Anthony P. Doulgeris,et al.  Automated Non-Gaussian Clustering of Polarimetric SAR , 2010 .

[40]  Robert Jenssen,et al.  Spectral Clustering of Polarimetric SAR Data With Wishart-Derived Distance Measures , 2007 .

[41]  Fang Liu,et al.  A New MRF Framework with Dual Adaptive Contexts for Image Segmentation , 2007, 2007 International Conference on Computational Intelligence and Security (CIS 2007).

[42]  Sebastiano B. Serpico,et al.  Markov random field based image segmentation with adaptive neighborhoods to the detection of fine structures in SAR data , 1996, IGARSS '96. 1996 International Geoscience and Remote Sensing Symposium.

[43]  A. L. Choodarathnakara,et al.  Mixed Pixels : A Challenge in Remote Sensing Data Classification for Improving Performance , 2012 .

[44]  Murong Jiang,et al.  Adaptive Parameter Computing on Structure-Texture Image Decomposition , 2008, 2008 International Conference on Computer Science and Software Engineering.

[45]  Silvana G. Dellepiane,et al.  Synthetic aperture radar image segmentation by a detail preserving Markov random field approach , 1997, IEEE Trans. Geosci. Remote. Sens..

[46]  Yiming Pi,et al.  Polarimetric Contextual Classification of PolSAR Images Using Sparse Representation and Superpixels , 2014, Remote. Sens..

[47]  Charles-Alban Deledalle,et al.  Non-local Methods with Shape-Adaptive Patches (NLM-SAP) , 2012, Journal of Mathematical Imaging and Vision.

[48]  Anthony P. Doulgeris,et al.  An Automatic ${\cal U}$-Distribution and Markov Random Field Segmentation Algorithm for PolSAR Images , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[49]  Jong-Sen Lee,et al.  Polarimetric SAR speckle filtering and its implication for classification , 1999, IEEE Trans. Geosci. Remote. Sens..

[50]  Dirk H. Hoekman,et al.  Unsupervised Full-Polarimetric SAR Data Segmentation as a Tool for Classification of Agricultural Areas , 2011, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[51]  G. Celeux,et al.  A Classification EM algorithm for clustering and two stochastic versions , 1992 .

[52]  Fang Liu,et al.  Hierarchical semantic model and scattering mechanism based PolSAR image classification , 2015, Pattern Recognit..

[53]  Yi Su,et al.  Region-Based Classification of Polarimetric SAR Images Using Wishart MRF , 2008, IEEE Geoscience and Remote Sensing Letters.

[54]  Yang Ru-liang Polarimetric SAR Image Segmentation by an Adaptive Neighborhood Markov Random Field , 2009 .

[55]  Corina da Costa Freitas,et al.  Classifying Multifrequency Fully Polarimetric Imagery With Multiple Sources of Statistical Evidence and Contextual Information , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[56]  Armand Lopes,et al.  Optimal speckle reduction for the product model in multilook polarimetric SAR imagery and the Wishart distribution , 1997, IEEE Trans. Geosci. Remote. Sens..