Size-Controlled Synthesis of Spherical TiO2 Nanoparticles: Morphology, Crystallization, and Phase Transition

Obtaining spherical-shaped semiconductor nanoparticles of uniform size is essential for the fabrication of photonic crystals. We report the synthesis of nanometer-size spherical titania particles with narrow size distribution from glycolated precursors. Through controlled hydrolysis of glycolated precursors, particles of 683 to 50 nm average diameters, with narrow size distribution, could be produced for the first time. Effects of air annealing on the morphology, size shrinkage, and phase transition of the nanoparticles are studied by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and high-resolution electron microscopy techniques. Probable mechanisms for formation of titania nanoparticles and their size control are discussed.

[1]  D. Pine,et al.  Synthesis of spherical polymer and titania photonic crystallites. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[2]  Theo Siegrist,et al.  An organometallic synthesis of TiO2 nanoparticles. , 2005, Nano letters.

[3]  Younan Xia,et al.  Monodispersed Spherical Colloids of Titania: Synthesis, Characterization, and Crystallization , 2003 .

[4]  Christopher G Thanos,et al.  Nanotechnology and medicine , 2003, Expert opinion on biological therapy.

[5]  S. C. Parker,et al.  The Effect of Size-Dependent Nanoparticle Energetics on Catalyst Sintering , 2002, Science.

[6]  Zhiyong Tang,et al.  Spontaneous Organization of Single CdTe Nanoparticles into Luminescent Nanowires , 2002, Science.

[7]  Zhong Lin Wang,et al.  Nanobelts of Semiconducting Oxides , 2001, Science.

[8]  Yongli He,et al.  Raman scattering study on anatase TiO2 nanocrystals , 2000 .

[9]  Jackie Y. Ying,et al.  Sol−Gel Synthesis and Hydrothermal Processing of Anatase and Rutile Titania Nanocrystals , 1999 .

[10]  Jackie Y. Ying,et al.  Role of Particle Size in Nanocrystalline TiO2-Based Photocatalysts , 1998 .

[11]  Vos,et al.  Preparation of photonic crystals made of air spheres in titania , 1998, Science.

[12]  Lifeng Dong,et al.  Gas sensing properties of nano-ZnO prepared by arc plasma method , 1997 .

[13]  Michael Grätzel,et al.  Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder , 1996 .

[14]  L. Kavan,et al.  Nanocrystalline TiO2 (Anatase) Electrodes: Surface Morphology, Adsorption, and Electrochemical Properties , 1996 .

[15]  M. Tomkiewicz,et al.  Titanium dioxide aerogels for photocatalytic decontamination of aquatic environments , 1993 .

[16]  Mohammad Khaja Nazeeruddin,et al.  Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes , 1993 .

[17]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[18]  R. Siegel,et al.  Calibration of the Raman spectrum to the oxygen stoichiometry of nanophase TiO2 , 1990 .

[19]  J. C. Parker,et al.  Raman microprobe study of nanophase TiO_2 and oxidation-induced spectral changes , 1990 .

[20]  C. Brinker,et al.  Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing , 1990 .

[21]  T. Ring,et al.  Nucleation and growth of monosized titania powders from alcohol solution , 1986 .

[22]  H. Bowen,et al.  High-purity, monodisperse TiO2 powders by hydrolysis of titanium tetraethoxide. 1. Synthesis and physical properties , 1985 .

[23]  E. Matijević,et al.  Preparation of uniform colloidal dispersions by chemical reactions in aerosols. I. Spherical particles of titanium dioxide , 1979 .

[24]  Fujio Izumi,et al.  Raman spectrum of anatase, TiO2 , 1978 .

[25]  J. Traylor The Lattice Dynamics of Rutile. , 1971 .

[26]  T. C. Damen,et al.  Raman Spectra of TiO2, MgF2, ZnF2, FeF2, and MnF2 , 1967 .

[27]  B. Cullity,et al.  Elements of X-ray diffraction , 1957 .

[28]  Richard G. Herman,et al.  Sorption of nitrogen bases and XPS study of mesoporous solid acid SBA-15 , 2004 .

[29]  G. Tompsett,et al.  The Raman spectrum of brookite, TiO2 (Pbca, Z = 8) , 1995 .

[30]  Clément Sanchez,et al.  Sol-gel chemistry of transition metal oxides , 1988 .