Topology Preservation in SOFM: An Euclidean versus Manhattan Distance Comparison
暂无分享,去创建一个
[1] Martín del Brío Bonifacio. Procesamiento neuronal con mapas autoorganizados: arquitecturas digitales , 1995 .
[2] B. Martin-del-Brio,et al. A low-cost neuroprocessor board for emulating the SOFM neural model , 1998, 1998 IEEE International Conference on Electronics, Circuits and Systems. Surfing the Waves of Science and Technology (Cat. No.98EX196).
[3] Jeanny Hérault,et al. Curvilinear component analysis: a self-organizing neural network for nonlinear mapping of data sets , 1997, IEEE Trans. Neural Networks.
[4] Pierre Demartines. Analyse de donnees par reseaux de neurones auto-organises , 1994 .
[5] Thomas Villmann,et al. Topology preservation in self-organizing feature maps: exact definition and measurement , 1997, IEEE Trans. Neural Networks.
[6] Anil K. Jain,et al. A nonlinear projection method based on Kohonen's topology preserving maps , 1992, IEEE Trans. Neural Networks.
[7] Teuvo Kohonen,et al. Self-Organization and Associative Memory , 1988 .
[8] Anil K. Jain,et al. Artificial neural networks for feature extraction and multivariate data projection , 1995, IEEE Trans. Neural Networks.
[9] Bonifacio Martín del Brío,et al. Redes neuronales y sistemas borrosos: introducción teórica y práctica , 1997 .
[10] Catherine Blake,et al. UCI Repository of machine learning databases , 1998 .
[11] John W. Sammon,et al. A Nonlinear Mapping for Data Structure Analysis , 1969, IEEE Transactions on Computers.
[12] Christopher J. Merz,et al. UCI Repository of Machine Learning Databases , 1996 .
[13] Bonifacio Martín del Brío,et al. Predicción de la quiebra bancaria mediante el empleo de redes neuronales artificiales , 1993 .