Models as Approximations — A Conspiracy of Random Regressors and Model Misspecification Against Classical Inference in Regression
暂无分享,去创建一个
A. Buja | L. Brown | E. George | M. Traskin | R. Berk | Linda H. Zhao | Kai Zhang | E. Pitkin
[1] A. Buja,et al. Statistica Sinica Preprint No : SS-2016-0546 R 1 Title Calibrated Percentile Double Bootstrap For Robust Linear Regression Inference , 2017 .
[2] Sara van de Geer,et al. High-dimensional inference in misspecified linear models , 2015, 1503.06426.
[3] Po-Ling Loh,et al. Statistical consistency and asymptotic normality for high-dimensional robust M-estimators , 2015, ArXiv.
[4] Laurie Davies,et al. Data Analysis and Approximate Models , 2015 .
[5] D. Donoho,et al. Variance Breakdown of Huber ( M )-estimators : n / p → m ∈ ( 1 , ∞ ) , 2015 .
[6] Anthony O'Hagan,et al. Bayesian inference with misspecified models: Inference about what? , 2013 .
[7] Stephen G. Walker,et al. Bayesian inference with misspecified models , 2013 .
[8] P. Bickel,et al. Optimal M-estimation in high-dimensional regression , 2013, Proceedings of the National Academy of Sciences.
[9] A. Buja,et al. Valid post-selection inference , 2013, 1306.1059.
[10] Jon Wakefield,et al. Bayesian sandwich posteriors for pseudo-true parameters , 2012 .
[11] F. Götze,et al. RESAMPLING FEWER THAN n OBSERVATIONS: GAINS, LOSSES, AND REMEDIES FOR LOSSES , 2012 .
[12] L. Wasserman. Low Assumptions, High Dimensions , 2011 .
[13] Thomas Lumley,et al. Model-Robust Regression and a Bayesian `Sandwich' Estimator , 2010, 1101.1402.
[14] Donald Ylvisaker,et al. Counting the Homeless in Los Angeles County , 2008, 0805.2840.
[15] A. Gelman,et al. Splitting a Predictor at the Upper Quarter or Third and the Lower Quarter or Third , 2007 .
[16] M. Kenward,et al. An Introduction to the Bootstrap , 2007 .
[17] D. Freedman,et al. On The So-Called “Huber Sandwich Estimator” and “Robust Standard Errors” , 2006 .
[18] Donald Hedeker,et al. Longitudinal Data Analysis , 2006 .
[19] Alastair R. Hall. Generalized Method of Moments (Advanced Texts in Econometrics Series, Oxford University Press) , 2005 .
[20] R. Carroll,et al. A Note on the Efficiency of Sandwich Covariance Matrix Estimation , 2001 .
[21] J. S. Long,et al. Using Heteroscedasticity Consistent Standard Errors in the Linear Regression Model , 2000 .
[22] B. Everitt,et al. Analysis of longitudinal data , 1998, British Journal of Psychiatry.
[23] Adrian Pagan,et al. Estimation, Inference and Specification Analysis. , 1996 .
[24] Joseph P. Romano,et al. Large Sample Confidence Regions Based on Subsamples under Minimal Assumptions , 1994 .
[25] E. Mammen. Bootstrap and Wild Bootstrap for High Dimensional Linear Models , 1993 .
[26] P. Hall. The Bootstrap and Edgeworth Expansion , 1992 .
[27] M. Berman. A theorem of Jacobi and its generalization , 1988 .
[28] B. Efron. The jackknife, the bootstrap, and other resampling plans , 1987 .
[29] John Law,et al. Robust Statistics—The Approach Based on Influence Functions , 1986 .
[30] W. Newey,et al. A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelationconsistent Covariance Matrix , 1986 .
[31] N. Weber,et al. The jackknife and heteroskedasticity: Consistent variance estimation for regression models , 1986 .
[32] H. White,et al. Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties☆ , 1985 .
[33] R. Welsch,et al. Efficient Bounded-Influence Regression Estimation , 1982 .
[34] J. Kent. Robust properties of likelihood ratio tests , 1982 .
[35] D. Freedman. Bootstrapping Regression Models , 1981 .
[36] H. White. Consequences and Detection of Misspecified Nonlinear Regression Models , 1981 .
[37] H. White. A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity , 1980 .
[38] H. White. Using Least Squares to Approximate Unknown Regression Functions , 1980 .
[39] G. Box. Robustness in the Strategy of Scientific Model Building. , 1979 .
[40] D. Hinkley. Jackknifing in Unbalanced Situations , 1977 .
[41] R. Berk,et al. CONSISTENCY A POSTERIORI , 1970 .
[42] P. J. Huber. The behavior of maximum likelihood estimates under nonstandard conditions , 1967 .
[43] R. Berk,et al. Limiting Behavior of Posterior Distributions when the Model is Incorrect , 1966 .
[44] F. Eicker. Asymptotic Normality and Consistency of the Least Squares Estimators for Families of Linear Regressions , 1963 .