Identification of regulatory structure and kinetic parameters of biochemical networks via mixed-integer dynamic optimization

BackgroundRecovering the network topology and associated kinetic parameter values from time-series data are central topics in systems biology. Nevertheless, methods that simultaneously do both are few and lack generality.ResultsHere, we present a rigorous approach for simultaneously estimating the parameters and regulatory topology of biochemical networks from time-series data. The parameter estimation task is formulated as a mixed-integer dynamic optimization problem with: (i) binary variables, used to model the existence of regulatory interactions and kinetic effects of metabolites in the network processes; and (ii) continuous variables, denoting metabolites concentrations and kinetic parameters values. The approach simultaneously optimizes the Akaike criterion, which captures the trade-off between complexity (measured by the number of parameters), and accuracy of the fitting. This simultaneous optimization mitigates a possible overfitting that could result from addition of spurious regulatory interactions.ConclusionThe capabilities of our approach were tested in one benchmark problem. Our algorithm is able to identify a set of plausible network topologies with their associated parameters.

[1]  Ignacio E. Grossmann,et al.  Part II. Future perspective on optimization , 2004, Comput. Chem. Eng..

[2]  Eberhard O. Voit,et al.  Computational Analysis of Biochemical Systems: A Practical Guide for Biochemists and Molecular Biologists , 2000 .

[3]  A Sorribas,et al.  Metabolic pathway characterization from transient response data obtained in situ: parameter estimation in S-system models. , 1993, Journal of theoretical biology.

[4]  M. Savageau Biochemical systems analysis. II. The steady-state solutions for an n-pool system using a power-law approximation. , 1969, Journal of theoretical biology.

[5]  Adam M. Feist,et al.  A comprehensive genome-scale reconstruction of Escherichia coli metabolism—2011 , 2011, Molecular systems biology.

[6]  Masami Yokota Hirai,et al.  Identification of a Metabolic Reaction Network from Time-Series Data of Metabolite Concentrations , 2013, PloS one.

[7]  Rudiyanto Gunawan,et al.  Parameter identifiability of power-law biochemical system models. , 2010, Journal of biotechnology.

[8]  Gonzalo Guillén-Gosálbez,et al.  Steady-state global optimization of metabolic non-linear dynamic models through recasting into power-law canonical models , 2011, BMC Systems Biology.

[9]  Ursula Klingmüller,et al.  Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood , 2009, Bioinform..

[10]  Jonas S. Almeida,et al.  Parameter optimization in S-system models , 2008, BMC Systems Biology.

[11]  M. Savageau Biochemical systems analysis. II. The steady-state solutions for an n-pool system using a power-law approximation. , 1969, Journal of theoretical biology.

[12]  Kristian E Markon,et al.  An Empirical Comparison of Information-Theoretic Selection Criteria for Multivariate Behavior Genetic Models , 2004, Behavior genetics.

[13]  Eberhard O Voit,et al.  Characterizability of metabolic pathway systems from time series data. , 2013, Mathematical biosciences.

[14]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[15]  A. Sorribas,et al.  Mathematical formalisms based on approximated kinetic representations for modeling genetic and metabolic pathways , 2008, Biotechnology & genetic engineering reviews.

[16]  Trupti Joshi,et al.  Inferring gene regulatory networks from multiple microarray datasets , 2006, Bioinform..

[17]  Julio R. Banga,et al.  Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems , 2006, BMC Bioinformatics.

[18]  Gonzalo Guillén-Gosálbez,et al.  Deterministic global optimization algorithm based on outer approximation for the parameter estimation of nonlinear dynamic biological systems , 2012, BMC Bioinformatics.

[19]  Carmen G. Moles,et al.  Parameter estimation in biochemical pathways: a comparison of global optimization methods. , 2003, Genome research.

[20]  Aldo R. Vecchietti,et al.  Modeling of discrete/continuous optimization problems: characterization and formulation of disjunctions and their relaxations , 2003, Comput. Chem. Eng..

[21]  A Sorribas,et al.  Structure identifiability in metabolic pathways: parameter estimation in models based on the power-law formalism. , 1994, The Biochemical journal.

[22]  Miroslav Fikar,et al.  Global optimization for parameter estimation of differential-algebraic systems , 2009 .

[23]  Jonas S. Almeida,et al.  Decoupling dynamical systems for pathway identification from metabolic profiles , 2004, Bioinform..

[24]  H. Akaike A new look at the statistical model identification , 1974 .

[25]  J. Banga,et al.  Structural Identifiability of Systems Biology Models: A Critical Comparison of Methods , 2011, PloS one.

[26]  Masahiro Okamoto,et al.  Development of a System for the Inference of Large Scale Genetic Networks , 2000, Pacific Symposium on Biocomputing.

[27]  Ignacio E. Grossmann,et al.  Retrospective on optimization , 2004, Comput. Chem. Eng..

[28]  I. Chou,et al.  Recent developments in parameter estimation and structure identification of biochemical and genomic systems. , 2009, Mathematical biosciences.

[29]  A. Sorribas,et al.  Cooperativity and saturation in biochemical networks: A saturable formalism using Taylor series approximations , 2007, Biotechnology and bioengineering.

[30]  J. Ross,et al.  Determination of causal connectivities of species in reaction networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[31]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[32]  C. Floudas,et al.  Global Optimization for the Parameter Estimation of Differential-Algebraic Systems , 2000 .