Testing the universality of free fall with rubidium and ytterbium in a very large baseline atom interferometer
暂无分享,去创建一个
Wolfgang Ertmer | Naceur Gaaloul | Jonas Hartwig | Christian Schubert | Ernst M. Rasel | Sven Abend | Holger Ahlers | S. Abend | W. Ertmer | N. Gaaloul | E. Rasel | D. Schlippert | J. Hartwig | H. Ahlers | K. Posso-Trujillo | Dennis Schlippert | Katerine Posso-Trujillo | C. Schubert | Katerine Posso-Trujillo
[1] A. Landragin,et al. Differential atom interferometry with $^{87}$Rb and $^{85}$Rb for testing the UFF in STE-QUEST , 2013, 1312.5963.
[2] S. Kokkelmans,et al. Interisotope determination of ultracold rubidium interactions from three high-precision experiments. , 2001, Physical review letters.
[3] M. Kasevich,et al. Method of phase extraction between coupled atom interferometers using ellipse-specific fitting. , 2002, Optics letters.
[4] S. Chiow,et al. 102ℏk large area atom interferometers. , 2011, Physical review letters.
[5] E Goering,et al. Magnetic reflectometry of heterostructures. , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.
[6] P. Cladé,et al. New determination of the fine structure constant and test of the quantum electrodynamics , 2010, 2012 Conference on Lasers and Electro-Optics (CLEO).
[7] H. Mueller,et al. Precision tests of general relativity with matter waves , 2011, 1106.2241.
[8] Gaël Varoquaux,et al. How to estimate the differential acceleration in a two-species atom interferometer to test the equivalence principle , 2009, 0910.2412.
[9] A. Peters,et al. Measurement of gravitational acceleration by dropping atoms , 1999, Nature.
[10] M. Kasevich,et al. Matter wave lensing to picokelvin temperatures. , 2014, Physical review letters.
[11] C W Oates,et al. Magnetic field-induced spectroscopy of forbidden optical transitions with application to lattice-based optical atomic clocks. , 2006, Physical review letters.
[12] McHugh,et al. Galilean test for the fifth force. , 1987, Physical review letters.
[13] N. Zahzam,et al. Simultaneous dual-species matter-wave accelerometer , 2013, 1307.2734.
[14] M. Weitz,et al. Atom-Based Test of the Equivalence Principle , 2009 .
[15] G. Tino,et al. Test of Einstein equivalence principle for 0-spin and half-integer-spin atoms: search for spin-gravity coupling effects. , 2014, Physical review letters.
[16] C. Wieman,et al. Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor , 1995, Science.
[17] A. Zhmoginov,et al. Antimatter interferometry for gravity measurements. , 2013, Physical review letters.
[18] A. Landragin,et al. The influence of transverse motion within an atomic gravimeter , 2011 .
[19] P. Jetzer,et al. STE-QUEST—test of the universality of free fall using cold atom interferometry , 2013, 1312.5980.
[20] J M Pino,et al. Tunable miscibility in a dual-species Bose-Einstein condensate. , 2008, Physical review letters.
[21] F. Sorrentino,et al. Precision measurement of the Newtonian gravitational constant using cold atoms , 2014, Nature.
[22] A. H. Wapstra,et al. The AME2003 atomic mass evaluation . (II). Tables, graphs and references , 2003 .
[23] H. Grünewald,et al. Handbook of Chemistry and Physics. Herausgegeben von R. C. Weast. CRC Press, Cleveland (Ohio) 1975. 56. Aufl., 2361 S., geb. DM 89.— , 1976 .
[24] R. Ciuryło,et al. Two-color photoassociation spectroscopy of ytterbium atoms and the precise determinations of s -wave scattering lengths , 2007, 0708.0752.
[25] S. Abend,et al. Self-alignment of a compact large-area atomic Sagnac interferometer , 2012 .
[26] Claus Lämmerzahl,et al. Metric fluctuations and the weak equivalence principle , 2008 .
[27] A. Landragin,et al. Stability comparison of two absolute gravimeters: optical versus atomic interferometers , 2014, 1406.5134.
[28] M. Kasevich,et al. Enhanced atom interferometer readout through the application of phase shear. , 2013, Physical review letters.
[29] All-optical transport and compression of ytterbium atoms into the surface of a solid immersion lens , 2012, 1209.0887.
[30] M. Kasevich,et al. Light-pulse atom interferometry , 2008, 0806.3261.
[31] R. Ciuryło,et al. Scattering lengths in isotopologues of the RbYb system , 2013, 1309.3131.
[32] P. De Bièvre,et al. Atomic weights of the elements. Review 2000 (IUPAC Technical Report) , 2009 .
[33] Holger Ahlers,et al. Interferometry with Bose-Einstein condensates in microgravity , 2011, 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC).
[34] A. Landragin,et al. Detecting inertial effects with airborne matter-wave interferometry , 2011, Nature communications.
[35] Cornish,et al. Stable 85Rb bose-einstein condensates with widely tunable interactions , 2000, Physical review letters.
[36] M. Kasevich,et al. Testing general relativity with atom interferometry. , 2006, Physical review letters.
[37] P. Windpassinger,et al. Creation of quantum-degenerate gases of ytterbium in a compact 2D-/3D-magneto-optical trap setup. , 2013, The Review of scientific instruments.
[38] Ho,et al. Binary Mixtures of Bose Condensates of Alkali Atoms. , 1996, Physical review letters.
[39] Pierre Touboul,et al. The MICROSCOPE experiment, ready for the in-orbit test of the equivalence principle , 2012 .
[40] M. Kasevich,et al. Sensitive absolute-gravity gradiometry using atom interferometry , 2001, physics/0105088.
[41] Yoshiro Takahashi,et al. Submicron spatial modulation of an interatomic interaction in a Bose-Einstein condensate. , 2010, Physical review letters.
[42] W. Schleich,et al. Quantum test of the Universality of Free Fall using rubidium and potassium , 2014, The European Physical Journal D.
[43] K. Honda,et al. Spin-singlet Bose-Einstein condensation of two-electron atoms. , 2003, Physical review letters.
[44] H. Müller,et al. Equivalence principle and bound kinetic energy. , 2013, Physical review letters.
[45] Tilo Steinmetz,et al. Degenerate Quantum Gases in Microgravity , 2011 .
[46] S Schlamminger,et al. Test of the equivalence principle using a rotating torsion balance. , 2007, Physical review letters.
[47] Slava G. Turyshev,et al. Progress in lunar laser ranging tests of relativistic gravity. , 2004 .
[48] T. Hänsch,et al. Atomic interferometer with amplitude gratings of light and its applications to atom based tests of the equivalence principle. , 2004, Physical review letters.
[49] W. Ertmer,et al. Simple method for generating Bose-Einstein condensates in a weak hybrid trap , 2010, 1012.4222.
[50] M. Popp,et al. A high-flux BEC source for mobile atom interferometers , 2015, 1501.00403.
[51] H. Mueller. Quantum mechanics, matter waves, and moving clocks , 2013, 1312.6449.
[52] M. Zhan,et al. Proportional-scanning-phase method to suppress the vibrational noise in nonisotope dual-atom-interferometer-based weak-equivalence-principle-test experiments , 2014 .
[53] M. Kasevich,et al. Multiaxis inertial sensing with long-time point source atom interferometry. , 2013, Physical review letters.
[54] J. Gordon,et al. Proposal for optically cooling atoms to temperatures of the order of 10-6 K. , 1986, Optics letters.
[55] S. Chiow,et al. Noise-immune conjugate large-area atom interferometers. , 2009, Physical review letters.
[56] T. Damour. Theoretical aspects of the equivalence principle , 2012, 1202.6311.
[57] A. Peters,et al. First gravity measurements using the mobile atom interferometer GAIN , 2013 .
[58] T. R. Saravanan,et al. ‘Galileo Galilei’ (GG): space test of the weak equivalence principle to 10−17 and laboratory demonstrations , 2012 .
[59] A. Ludlow,et al. An Atomic Clock with 10–18 Instability , 2013, Science.
[60] W. M. Haynes. CRC Handbook of Chemistry and Physics , 1990 .
[61] A. Clairon,et al. Limits to the sensitivity of a low noise compact atomic gravimeter , 2008, 0801.1270.
[62] P. Julienne,et al. Spatial separation in a thermal mixture of ultracoldYb174andRb87atoms , 2011, 1104.1722.
[63] S. Chiow,et al. A high-performance magnetic shield with large length-to-diameter ratio. , 2012, The Review of scientific instruments.
[64] A. Görlitz,et al. Two-photon photoassociation spectroscopy of heteronuclear YbRb. , 2011, Physical chemistry chemical physics : PCCP.