Testing the universality of free fall with rubidium and ytterbium in a very large baseline atom interferometer

We propose a very long baseline atom interferometer test of Einstein’s equivalence principle (EEP) with ytterbium and rubidium extending over 10 m of free fall. In view of existing parametrizations of EEP violations, this choice of test masses significantly broadens the scope of atom interferometric EEP tests with respect to other performed or proposed tests by comparing two elements with high atomic numbfers. In the first step, our experimental scheme will allow us to reach an accuracy in the Eotvos ratio of 7 · 10−13. This achievement will constrain violation scenarios beyond our present knowledge and will represent an important milestone for exploring a variety of schemes for further improvements of the tests as outlined in the paper. We will discuss the technical realisation in the new infrastructure of the Hanover Institute of Technology (HITec) and give a short overview of the requirements needed to reach this accuracy. The experiment will demonstrate a variety of techniques, which will be employed in future tests of EEP, high-accuracy gravimetry and gravity gradiometry. It includes operation of a force-sensitive atom interferometer with an alkaline earth-like element in free fall, beam splitting over macroscopic distances and novel source concepts.

[1]  A. Landragin,et al.  Differential atom interferometry with $^{87}$Rb and $^{85}$Rb for testing the UFF in STE-QUEST , 2013, 1312.5963.

[2]  S. Kokkelmans,et al.  Interisotope determination of ultracold rubidium interactions from three high-precision experiments. , 2001, Physical review letters.

[3]  M. Kasevich,et al.  Method of phase extraction between coupled atom interferometers using ellipse-specific fitting. , 2002, Optics letters.

[4]  S. Chiow,et al.  102ℏk large area atom interferometers. , 2011, Physical review letters.

[5]  E Goering,et al.  Magnetic reflectometry of heterostructures. , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[6]  P. Cladé,et al.  New determination of the fine structure constant and test of the quantum electrodynamics , 2010, 2012 Conference on Lasers and Electro-Optics (CLEO).

[7]  H. Mueller,et al.  Precision tests of general relativity with matter waves , 2011, 1106.2241.

[8]  Gaël Varoquaux,et al.  How to estimate the differential acceleration in a two-species atom interferometer to test the equivalence principle , 2009, 0910.2412.

[9]  A. Peters,et al.  Measurement of gravitational acceleration by dropping atoms , 1999, Nature.

[10]  M. Kasevich,et al.  Matter wave lensing to picokelvin temperatures. , 2014, Physical review letters.

[11]  C W Oates,et al.  Magnetic field-induced spectroscopy of forbidden optical transitions with application to lattice-based optical atomic clocks. , 2006, Physical review letters.

[12]  McHugh,et al.  Galilean test for the fifth force. , 1987, Physical review letters.

[13]  N. Zahzam,et al.  Simultaneous dual-species matter-wave accelerometer , 2013, 1307.2734.

[14]  M. Weitz,et al.  Atom-Based Test of the Equivalence Principle , 2009 .

[15]  G. Tino,et al.  Test of Einstein equivalence principle for 0-spin and half-integer-spin atoms: search for spin-gravity coupling effects. , 2014, Physical review letters.

[16]  C. Wieman,et al.  Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor , 1995, Science.

[17]  A. Zhmoginov,et al.  Antimatter interferometry for gravity measurements. , 2013, Physical review letters.

[18]  A. Landragin,et al.  The influence of transverse motion within an atomic gravimeter , 2011 .

[19]  P. Jetzer,et al.  STE-QUEST—test of the universality of free fall using cold atom interferometry , 2013, 1312.5980.

[20]  J M Pino,et al.  Tunable miscibility in a dual-species Bose-Einstein condensate. , 2008, Physical review letters.

[21]  F. Sorrentino,et al.  Precision measurement of the Newtonian gravitational constant using cold atoms , 2014, Nature.

[22]  A. H. Wapstra,et al.  The AME2003 atomic mass evaluation . (II). Tables, graphs and references , 2003 .

[23]  H. Grünewald,et al.  Handbook of Chemistry and Physics. Herausgegeben von R. C. Weast. CRC Press, Cleveland (Ohio) 1975. 56. Aufl., 2361 S., geb. DM 89.— , 1976 .

[24]  R. Ciuryło,et al.  Two-color photoassociation spectroscopy of ytterbium atoms and the precise determinations of s -wave scattering lengths , 2007, 0708.0752.

[25]  S. Abend,et al.  Self-alignment of a compact large-area atomic Sagnac interferometer , 2012 .

[26]  Claus Lämmerzahl,et al.  Metric fluctuations and the weak equivalence principle , 2008 .

[27]  A. Landragin,et al.  Stability comparison of two absolute gravimeters: optical versus atomic interferometers , 2014, 1406.5134.

[28]  M. Kasevich,et al.  Enhanced atom interferometer readout through the application of phase shear. , 2013, Physical review letters.

[29]  All-optical transport and compression of ytterbium atoms into the surface of a solid immersion lens , 2012, 1209.0887.

[30]  M. Kasevich,et al.  Light-pulse atom interferometry , 2008, 0806.3261.

[31]  R. Ciuryło,et al.  Scattering lengths in isotopologues of the RbYb system , 2013, 1309.3131.

[32]  P. De Bièvre,et al.  Atomic weights of the elements. Review 2000 (IUPAC Technical Report) , 2009 .

[33]  Holger Ahlers,et al.  Interferometry with Bose-Einstein condensates in microgravity , 2011, 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC).

[34]  A. Landragin,et al.  Detecting inertial effects with airborne matter-wave interferometry , 2011, Nature communications.

[35]  Cornish,et al.  Stable 85Rb bose-einstein condensates with widely tunable interactions , 2000, Physical review letters.

[36]  M. Kasevich,et al.  Testing general relativity with atom interferometry. , 2006, Physical review letters.

[37]  P. Windpassinger,et al.  Creation of quantum-degenerate gases of ytterbium in a compact 2D-/3D-magneto-optical trap setup. , 2013, The Review of scientific instruments.

[38]  Ho,et al.  Binary Mixtures of Bose Condensates of Alkali Atoms. , 1996, Physical review letters.

[39]  Pierre Touboul,et al.  The MICROSCOPE experiment, ready for the in-orbit test of the equivalence principle , 2012 .

[40]  M. Kasevich,et al.  Sensitive absolute-gravity gradiometry using atom interferometry , 2001, physics/0105088.

[41]  Yoshiro Takahashi,et al.  Submicron spatial modulation of an interatomic interaction in a Bose-Einstein condensate. , 2010, Physical review letters.

[42]  W. Schleich,et al.  Quantum test of the Universality of Free Fall using rubidium and potassium , 2014, The European Physical Journal D.

[43]  K. Honda,et al.  Spin-singlet Bose-Einstein condensation of two-electron atoms. , 2003, Physical review letters.

[44]  H. Müller,et al.  Equivalence principle and bound kinetic energy. , 2013, Physical review letters.

[45]  Tilo Steinmetz,et al.  Degenerate Quantum Gases in Microgravity , 2011 .

[46]  S Schlamminger,et al.  Test of the equivalence principle using a rotating torsion balance. , 2007, Physical review letters.

[47]  Slava G. Turyshev,et al.  Progress in lunar laser ranging tests of relativistic gravity. , 2004 .

[48]  T. Hänsch,et al.  Atomic interferometer with amplitude gratings of light and its applications to atom based tests of the equivalence principle. , 2004, Physical review letters.

[49]  W. Ertmer,et al.  Simple method for generating Bose-Einstein condensates in a weak hybrid trap , 2010, 1012.4222.

[50]  M. Popp,et al.  A high-flux BEC source for mobile atom interferometers , 2015, 1501.00403.

[51]  H. Mueller Quantum mechanics, matter waves, and moving clocks , 2013, 1312.6449.

[52]  M. Zhan,et al.  Proportional-scanning-phase method to suppress the vibrational noise in nonisotope dual-atom-interferometer-based weak-equivalence-principle-test experiments , 2014 .

[53]  M. Kasevich,et al.  Multiaxis inertial sensing with long-time point source atom interferometry. , 2013, Physical review letters.

[54]  J. Gordon,et al.  Proposal for optically cooling atoms to temperatures of the order of 10-6 K. , 1986, Optics letters.

[55]  S. Chiow,et al.  Noise-immune conjugate large-area atom interferometers. , 2009, Physical review letters.

[56]  T. Damour Theoretical aspects of the equivalence principle , 2012, 1202.6311.

[57]  A. Peters,et al.  First gravity measurements using the mobile atom interferometer GAIN , 2013 .

[58]  T. R. Saravanan,et al.  ‘Galileo Galilei’ (GG): space test of the weak equivalence principle to 10−17 and laboratory demonstrations , 2012 .

[59]  A. Ludlow,et al.  An Atomic Clock with 10–18 Instability , 2013, Science.

[60]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[61]  A. Clairon,et al.  Limits to the sensitivity of a low noise compact atomic gravimeter , 2008, 0801.1270.

[62]  P. Julienne,et al.  Spatial separation in a thermal mixture of ultracoldYb174andRb87atoms , 2011, 1104.1722.

[63]  S. Chiow,et al.  A high-performance magnetic shield with large length-to-diameter ratio. , 2012, The Review of scientific instruments.

[64]  A. Görlitz,et al.  Two-photon photoassociation spectroscopy of heteronuclear YbRb. , 2011, Physical chemistry chemical physics : PCCP.