Concrete resource analysis of the quantum linear-system algorithm used to compute the electromagnetic scattering cross section of a 2D target
暂无分享,去创建一个
Benoît Valiron | Eric van den Berg | Thomas E. Chapuran | Siun-Chuon Mau | D. Scott Alexander | Artur Scherer | B. Valiron | D. Alexander | S. Mau | T. Chapuran | Artur Scherer | S. Alexander | E. D. Berg | A. Scherer
[1] G. Brassard,et al. Quantum Amplitude Amplification and Estimation , 2000, quant-ph/0005055.
[2] S. Lloyd,et al. Quantum algorithms for supervised and unsupervised machine learning , 2013, 1307.0411.
[3] R. Cleve,et al. Quantum algorithms revisited , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[4] Luis,et al. Optimum phase-shift estimation and the quantum description of the phase difference. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[5] Thomas G. Draper,et al. A logarithmic-depth quantum carry-lookahead adder , 2006, Quantum Inf. Comput..
[6] Dmitri Maslov,et al. Fast and efficient exact synthesis of single-qubit unitaries generated by clifford and T gates , 2012, Quantum Inf. Comput..
[7] L. R. Scott,et al. On the conditioning of finite element equations with highly refined meshes , 1989 .
[8] Mile Gu,et al. Experimental quantum computing to solve systems of linear equations. , 2013, Physical review letters.
[9] Peter Selinger,et al. Remarks on Matsumoto and Amano's normal form for single-qubit Clifford+T operators , 2013, ArXiv.
[10] Thorsten Altenkirch,et al. The Quantum IO Monad , 2006 .
[11] A. Harrow,et al. Quantum algorithm for linear systems of equations. , 2008, Physical review letters.
[12] R. Cleve,et al. Efficient Quantum Algorithms for Simulating Sparse Hamiltonians , 2005, quant-ph/0508139.
[13] Alán Aspuru-Guzik,et al. A two-qubit photonic quantum processor and its application to solving systems of linear equations , 2014, Scientific Reports.
[14] Bernhard Ömer,et al. Quantum Programming in QCL , 2000 .
[15] Rodney Van Meter,et al. Optimization of the Solovay-Kitaev algorithm , 2012, 1209.4139.
[16] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[17] B. D. Clader,et al. Preconditioned quantum linear system algorithm. , 2013, Physical review letters.
[18] N. Mermin. Quantum Computer Science: An Introduction , 2007 .
[19] Peter Selinger,et al. Efficient Clifford+T approximation of single-qubit operators , 2012, Quantum Inf. Comput..
[20] Seth Lloyd,et al. Quantum algorithm for data fitting. , 2012, Physical review letters.
[21] Benoît Valiron,et al. An Introduction to Quantum Programming in Quipper , 2013, RC.
[22] Y. Gurevich,et al. Efficient decomposition of single-qubit gates intoVbasis circuits , 2013, 1303.1411.
[23] Andrew M. Childs,et al. Hamiltonian Simulation with Nearly Optimal Dependence on all Parameters , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.
[24] P. Selinger,et al. Quantum lambda calculus , 2010 .
[25] Seth Lloyd,et al. Quantum algorithm for data fitting. , 2012, Physical review letters.
[26] H. Trotter. On the product of semi-groups of operators , 1959 .
[27] J. Shewchuk. An Introduction to the Conjugate Gradient Method Without the Agonizing Pain , 1994 .
[28] Philip Walther,et al. 2 a b c d State qubit : Eigenvalue qubit : Ancilla qubit : 1 , 2013 .
[29] Neil J. Ross,et al. Optimal ancilla-free Clifford+T approximation of z-rotations , 2014, Quantum Inf. Comput..
[30] Benoît Valiron,et al. Quipper: a scalable quantum programming language , 2013, PLDI.
[31] Richard Cleve,et al. Exponential improvement in precision for Hamiltonian-evolution simulation , 2013 .
[32] William Layton,et al. High-accuracy finite-element methods for positive symmetric systems , 1986 .
[33] Kazuyuki Amano,et al. Representation of Quantum Circuits with Clifford and $\pi/8$ Gates , 2008, 0806.3834.
[34] Rolf Landauer,et al. Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..
[35] Andrew M. Childs,et al. Exponential improvement in precision for simulating sparse Hamiltonians , 2013, Forum of Mathematics, Sigma.
[36] Koen Claessen. Embedded Languages for Describing and Verifying Hardware , 2001 .
[37] Benoît Valiron,et al. A Lambda Calculus for Quantum Computation with Classical Control , 2005, TLCA.
[38] Benoît Valiron,et al. A lambda calculus for quantum computation with classical control , 2006, Math. Struct. Comput. Sci..
[39] Austin G. Fowler. Constructing arbitrary Steane code single logical qubit fault-tolerant gates , 2011, Quantum Inf. Comput..
[40] Austin G. Fowler. Towards Large-Scale Quantum Computation , 2005 .
[41] Jian-Ming Jin,et al. The Finite Element Method in Electromagnetics , 1993 .
[42] Daniel A. Spielman,et al. Exponential algorithmic speedup by a quantum walk , 2002, STOC '03.
[43] Peter Selinger,et al. Exact synthesis of multi-qubit Clifford+T circuits , 2012, ArXiv.
[44] Andris Ambainis,et al. Variable time amplitude amplification and a faster quantum algorithm for solving systems of linear equations , 2010, ArXiv.
[45] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[46] Dmitri Maslov,et al. Asymptotically optimal approximation of single qubit unitaries by Clifford and T circuits using a constant number of ancillary qubits , 2012, Physical review letters.
[47] Mika Hirvensalo,et al. Quantum Computing and Quantum Information , 2019 .
[48] Charles H. Bennett,et al. Logical reversibility of computation , 1973 .
[49] Jianming Jin,et al. Edge-based finite elements and vector ABCs applied to 3-D scattering , 1992 .
[50] M. Suzuki,et al. Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations , 1990 .