Concrete resource analysis of the quantum linear-system algorithm used to compute the electromagnetic scattering cross section of a 2D target

We provide a detailed estimate for the logical resource requirements of the quantum linear-system algorithm (Harrow et al. in Phys Rev Lett 103:150502, 2009) including the recently described elaborations and application to computing the electromagnetic scattering cross section of a metallic target (Clader et al. in Phys Rev Lett 110:250504, 2013). Our resource estimates are based on the standard quantum-circuit model of quantum computation; they comprise circuit width (related to parallelism), circuit depth (total number of steps), the number of qubits and ancilla qubits employed, and the overall number of elementary quantum gate operations as well as more specific gate counts for each elementary fault-tolerant gate from the standard set $$\{ X, Y, Z, H, S, T, \text{ CNOT } \}$${X,Y,Z,H,S,T,CNOT}. In order to perform these estimates, we used an approach that combines manual analysis with automated estimates generated via the Quipper quantum programming language and compiler. Our estimates pertain to the explicit example problem size $$N=332{,}020{,}680$$N=332,020,680 beyond which, according to a crude big-O complexity comparison, the quantum linear-system algorithm is expected to run faster than the best known classical linear-system solving algorithm. For this problem size, a desired calculation accuracy $$\varepsilon =0.01$$ε=0.01 requires an approximate circuit width 340 and circuit depth of order $$10^{25}$$1025 if oracle costs are excluded, and a circuit width and circuit depth of order $$10^8$$108 and $$10^{29}$$1029, respectively, if the resource requirements of oracles are included, indicating that the commonly ignored oracle resources are considerable. In addition to providing detailed logical resource estimates, it is also the purpose of this paper to demonstrate explicitly (using a fine-grained approach rather than relying on coarse big-O asymptotic approximations) how these impressively large numbers arise with an actual circuit implementation of a quantum algorithm. While our estimates may prove to be conservative as more efficient advanced quantum-computation techniques are developed, they nevertheless provide a valid baseline for research targeting a reduction of the algorithmic-level resource requirements, implying that a reduction by many orders of magnitude is necessary for the algorithm to become practical.

[1]  G. Brassard,et al.  Quantum Amplitude Amplification and Estimation , 2000, quant-ph/0005055.

[2]  S. Lloyd,et al.  Quantum algorithms for supervised and unsupervised machine learning , 2013, 1307.0411.

[3]  R. Cleve,et al.  Quantum algorithms revisited , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[4]  Luis,et al.  Optimum phase-shift estimation and the quantum description of the phase difference. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[5]  Thomas G. Draper,et al.  A logarithmic-depth quantum carry-lookahead adder , 2006, Quantum Inf. Comput..

[6]  Dmitri Maslov,et al.  Fast and efficient exact synthesis of single-qubit unitaries generated by clifford and T gates , 2012, Quantum Inf. Comput..

[7]  L. R. Scott,et al.  On the conditioning of finite element equations with highly refined meshes , 1989 .

[8]  Mile Gu,et al.  Experimental quantum computing to solve systems of linear equations. , 2013, Physical review letters.

[9]  Peter Selinger,et al.  Remarks on Matsumoto and Amano's normal form for single-qubit Clifford+T operators , 2013, ArXiv.

[10]  Thorsten Altenkirch,et al.  The Quantum IO Monad , 2006 .

[11]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[12]  R. Cleve,et al.  Efficient Quantum Algorithms for Simulating Sparse Hamiltonians , 2005, quant-ph/0508139.

[13]  Alán Aspuru-Guzik,et al.  A two-qubit photonic quantum processor and its application to solving systems of linear equations , 2014, Scientific Reports.

[14]  Bernhard Ömer,et al.  Quantum Programming in QCL , 2000 .

[15]  Rodney Van Meter,et al.  Optimization of the Solovay-Kitaev algorithm , 2012, 1209.4139.

[16]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[17]  B. D. Clader,et al.  Preconditioned quantum linear system algorithm. , 2013, Physical review letters.

[18]  N. Mermin Quantum Computer Science: An Introduction , 2007 .

[19]  Peter Selinger,et al.  Efficient Clifford+T approximation of single-qubit operators , 2012, Quantum Inf. Comput..

[20]  Seth Lloyd,et al.  Quantum algorithm for data fitting. , 2012, Physical review letters.

[21]  Benoît Valiron,et al.  An Introduction to Quantum Programming in Quipper , 2013, RC.

[22]  Y. Gurevich,et al.  Efficient decomposition of single-qubit gates intoVbasis circuits , 2013, 1303.1411.

[23]  Andrew M. Childs,et al.  Hamiltonian Simulation with Nearly Optimal Dependence on all Parameters , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[24]  P. Selinger,et al.  Quantum lambda calculus , 2010 .

[25]  Seth Lloyd,et al.  Quantum algorithm for data fitting. , 2012, Physical review letters.

[26]  H. Trotter On the product of semi-groups of operators , 1959 .

[27]  J. Shewchuk An Introduction to the Conjugate Gradient Method Without the Agonizing Pain , 1994 .

[28]  Philip Walther,et al.  2 a b c d State qubit : Eigenvalue qubit : Ancilla qubit : 1 , 2013 .

[29]  Neil J. Ross,et al.  Optimal ancilla-free Clifford+T approximation of z-rotations , 2014, Quantum Inf. Comput..

[30]  Benoît Valiron,et al.  Quipper: a scalable quantum programming language , 2013, PLDI.

[31]  Richard Cleve,et al.  Exponential improvement in precision for Hamiltonian-evolution simulation , 2013 .

[32]  William Layton,et al.  High-accuracy finite-element methods for positive symmetric systems , 1986 .

[33]  Kazuyuki Amano,et al.  Representation of Quantum Circuits with Clifford and $\pi/8$ Gates , 2008, 0806.3834.

[34]  Rolf Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[35]  Andrew M. Childs,et al.  Exponential improvement in precision for simulating sparse Hamiltonians , 2013, Forum of Mathematics, Sigma.

[36]  Koen Claessen Embedded Languages for Describing and Verifying Hardware , 2001 .

[37]  Benoît Valiron,et al.  A Lambda Calculus for Quantum Computation with Classical Control , 2005, TLCA.

[38]  Benoît Valiron,et al.  A lambda calculus for quantum computation with classical control , 2006, Math. Struct. Comput. Sci..

[39]  Austin G. Fowler Constructing arbitrary Steane code single logical qubit fault-tolerant gates , 2011, Quantum Inf. Comput..

[40]  Austin G. Fowler Towards Large-Scale Quantum Computation , 2005 .

[41]  Jian-Ming Jin,et al.  The Finite Element Method in Electromagnetics , 1993 .

[42]  Daniel A. Spielman,et al.  Exponential algorithmic speedup by a quantum walk , 2002, STOC '03.

[43]  Peter Selinger,et al.  Exact synthesis of multi-qubit Clifford+T circuits , 2012, ArXiv.

[44]  Andris Ambainis,et al.  Variable time amplitude amplification and a faster quantum algorithm for solving systems of linear equations , 2010, ArXiv.

[45]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[46]  Dmitri Maslov,et al.  Asymptotically optimal approximation of single qubit unitaries by Clifford and T circuits using a constant number of ancillary qubits , 2012, Physical review letters.

[47]  Mika Hirvensalo,et al.  Quantum Computing and Quantum Information , 2019 .

[48]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[49]  Jianming Jin,et al.  Edge-based finite elements and vector ABCs applied to 3-D scattering , 1992 .

[50]  M. Suzuki,et al.  Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations , 1990 .