Unsupervised Multispectral Image Segmentation Using Generalized Gaussian Noise Model

This paper is concerned with hierarchical Markov Random Field (MRF) models and their applications to multispectral image segmentation. We present an extension of the classic Gaussian model for the modelization of the data likelihood based on a Generalized Gaussian (GG) model, requiring a "shape parameter". In order to obtain an unsupervised multispectral image segmentation, we develop a two step algorithm. In the first step, we estimate the parameters associated with a causal Markovian model (on a quad-tree1) and a generalized Gaussian modeling for the data-driven term, by using an Iterative Conditional Estimation (ICE algorithm [16]). One of the originality of thispa per consists in explicitly decorrelate the multispectral observations during the estimation step on a quad-tree structure. A second step gives the segmentation map obtained with the estimated parameters, according to the Modes of Posterior Marginals (MPM) estimator. The main motivation of the paper is to extend the variety of noise models which results of the distribution mixture on multispectral images. Some results on synthetic and SPOT imagesv alidate our approach.

[1]  Rui J. P. de Figueiredo,et al.  Maximum likelihood estimation of a class of non-Gaussian densities with application to Ip deconvolution , 1989, IEEE Trans. Acoust. Speech Signal Process..

[2]  Yunhan Dong,et al.  Segmentation of radar imagery using Gaussian Markov random field models and wavelet transform techniques , 1997, IGARSS'97. 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing - A Scientific Vision for Sustainable Development.

[3]  Reuven Y. Rubinstein,et al.  Simulation and the Monte Carlo Method , 1981 .

[4]  Francoise J. Preteux,et al.  Hierarchical Markov random field models applied to image analysis: a review , 1995, Optics + Photonics.

[5]  G. Celeux,et al.  L'algorithme SEM: un algorithme d'apprentissage probabiliste: pour la reconnaissance de mélange de densités , 1986 .

[6]  Rangaraj M. Rangayyan,et al.  Lossless compression of Peanoscanned images , 1994, J. Electronic Imaging.

[7]  W. Pieczynski,et al.  Unsupervised Bayesian Fusion of Correlated Sensors , 1998 .

[8]  Robert J. Elliott,et al.  Estimation for discrete Markov random fields observed in Gaussian noise , 1994, IEEE Trans. Inf. Theory.

[9]  Patrick Pérez,et al.  Hierarchical statistical models for the fusion of multiresolution image data , 1995, Proceedings of IEEE International Conference on Computer Vision.

[10]  Wojciech Pieczynski,et al.  Estimation of Generalized Multisensor Hidden Markov Chains and Unsupervised Image Segmentation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Xavier Descombes,et al.  Extraction des zones urbaines fondée sur une analyse de la texture par modélisation markovienne , 1998 .

[12]  Patrick Pérez,et al.  Unsupervised Segmentation Applied on Sonar Images , 1997, EMMCVPR.

[13]  Patrick Pérez,et al.  Three-Class Markovian Segmentation of High-Resolution Sonar Images , 1999, Comput. Vis. Image Underst..

[14]  John B. Thomas,et al.  On polarity detection schemes with non-gaussian inputs , 1965 .