HABILITATION THESIS

[1]  Timo Kuosmanen,et al.  Performance measurement and best-practice benchmarking of mutual funds: combining stochastic dominance criteria with data envelopment analysis , 2007 .

[2]  Michael J. Pelsmajer,et al.  Removing even crossings , 2007, J. Comb. Theory, Ser. B.

[3]  E. R. Kampen Komplexe in euklidischen Räumen , 1933 .

[4]  Seiya Negami,et al.  Crossing numbers of graph embedding pairs on closed surfaces , 2001, Journal of Graph Theory.

[5]  James R. Luedtke,et al.  Nonanticipative duality, relaxations, and formulations for chance-constrained stochastic programs , 2016, Mathematical Programming.

[6]  Amir Dembo,et al.  Large Deviations Techniques and Applications , 1998 .

[7]  Martin Branda,et al.  Convergence of a Scholtes-type regularization method for cardinality-constrained optimization problems with an application in sparse robust portfolio optimization , 2017, Comput. Optim. Appl..

[8]  A. U.S.,et al.  Measuring the efficiency of decision making units , 2003 .

[9]  C. Kuratowski Sur le problème des courbes gauches en Topologie , 1930 .

[10]  John D. Lamb,et al.  Data envelopment analysis models of investment funds , 2012, Eur. J. Oper. Res..

[11]  Alexander J. McNeil,et al.  Multivariate Archimedean copulas, $d$-monotone functions and $\ell_1$-norm symmetric distributions , 2009, 0908.3750.

[12]  Martin Branda Influence of short sales and margin requirements on portfolio efficiency-a DEA-risk approach , 2014 .

[13]  Michael J. Pelsmajer,et al.  Strong Hanani--Tutte on the Projective Plane , 2009, SIAM J. Discret. Math..

[14]  Abebe Geletu,et al.  An Inner-Outer Approximation Approach to Chance Constrained Optimization , 2017, SIAM J. Optim..

[15]  E. Helly,et al.  Über Systeme von abgeschlossenen Mengen mit gemeinschaftlichen Punkten , 1930 .

[16]  Martin Branda,et al.  Fixed interval scheduling under uncertainty - A tabu search algorithm for an extended robust coloring formulation , 2016, Comput. Ind. Eng..

[17]  Bastian Goldlücke,et al.  Variational Analysis , 2014, Computer Vision, A Reference Guide.

[18]  Kristiaan Kerstens,et al.  Benchmarking mean-variance portfolios using a shortage function: the choice of direction vector affects rankings! , 2012, J. Oper. Res. Soc..

[19]  Christian Kanzow,et al.  Mathematical Programs with Cardinality Constraints: Reformulation by Complementarity-Type Conditions and a Regularization Method , 2016, SIAM J. Optim..

[20]  Martin Branda,et al.  Chance constrained problems: penalty reformulation and performance of sample approximation technique , 2012, Kybernetika.

[21]  R. Rockafellar,et al.  Conditional Value-at-Risk for General Loss Distributions , 2001 .

[22]  James R. Luedtke,et al.  A Sample Approximation Approach for Optimization with Probabilistic Constraints , 2008, SIAM J. Optim..

[23]  Javier Yáñez,et al.  The robust coloring problem , 2003, Eur. J. Oper. Res..

[24]  J. Burke An exact penalization viewpoint of constrained optimization , 1991 .

[25]  Martin Branda,et al.  Stochastic programming problems with generalized integrated chance constraints , 2012 .

[26]  Maria Gabriela Martinez,et al.  Regularization methods for optimization problems with probabilistic constraints , 2013, Math. Program..

[27]  Martin Branda,et al.  Diversification-consistent data envelopment analysis with general deviation measures , 2013, Eur. J. Oper. Res..

[28]  Bogdan Grechuk,et al.  A simple SSD-efficiency test , 2014, Optim. Lett..

[29]  René Henrion,et al.  Gradient Formulae for Nonlinear Probabilistic Constraints with Gaussian and Gaussian-Like Distributions , 2014, SIAM J. Optim..

[30]  A. Skopenkov,et al.  A generalization of Neuwirth's theorem on thickening 2-dimensional polyhedra , 1995 .

[31]  A. Björner Shellable and Cohen-Macaulay partially ordered sets , 1980 .

[32]  Liwei Zhang,et al.  A Smoothing Function Approach to Joint Chance-Constrained Programs , 2014, J. Optim. Theory Appl..

[33]  Benson Farb,et al.  A primer on mapping class groups , 2013 .

[34]  Duan Li,et al.  Optimal Cardinality Constrained Portfolio Selection , 2013, Oper. Res..

[35]  William M. Raike,et al.  Dissection Methods for Solutions in Chance Constrained Programming Problems Under Discrete Distributions , 1970 .

[36]  Anne Verroust-Blondet,et al.  Computing a canonical polygonal schema of an orientable triangulated surface , 2001, SCG '01.

[37]  J. Świa̧tkowski,et al.  Simplicial nonpositive curvature , 2006 .

[38]  Richard P. Stanley,et al.  An Introduction to Cohen-Macaulay Partially Ordered Sets , 1982 .

[39]  Jirí Matousek,et al.  Computing All Maps into a Sphere , 2011, J. ACM.

[40]  Maarten H. van der Vlerk,et al.  Integrated Chance Constraints: Reduced Forms and an Algorithm , 2006, Comput. Manag. Sci..

[41]  James R. Luedtke A branch-and-cut decomposition algorithm for solving chance-constrained mathematical programs with finite support , 2013, Mathematical Programming.

[42]  Kristiaan Kerstens,et al.  Geometric representation of the mean-variance-skewness portfolio frontier based upon the shortage function , 2011, Eur. J. Oper. Res..

[43]  Ch. Chojnacki,et al.  Über wesentlich unplättbare Kurven im dreidimensionalen Raume , 1934 .

[44]  V. Bryant,et al.  Straight line representations of planar graphs. , 1989 .

[45]  Jonathan L. Gross,et al.  A Linear Time Planarity Algorithm for 2-Complexes , 1979, JACM.

[46]  Frank H. Lutz,et al.  Extremal Examples of Collapsible Complexes and Random Discrete Morse Theory , 2014, Discret. Comput. Geom..

[47]  André Lieutier,et al.  Geometry-driven Collapses for Converting a Čech Complex into a Triangulation of a Nicely Triangulable Shape , 2013, Discret. Comput. Geom..

[48]  Preyas S. Desai,et al.  Efficiency of mutual funds and portfolio performance measurement: A non-parametric approach , 1997 .

[49]  J. Matousek,et al.  Using The Borsuk-Ulam Theorem , 2007 .

[50]  Jirí Matousek,et al.  Hardness of embedding simplicial complexes in Rd , 2009, SODA.

[51]  Milos Kopa,et al.  DEA models equivalent to general Nth order stochastic dominance efficiency tests , 2016, Oper. Res. Lett..

[52]  E. Helly Über Mengen konvexer Körper mit gemeinschaftlichen Punkte. , 1923 .

[53]  Duan Li,et al.  Successive convex approximations to cardinality-constrained convex programs: a piecewise-linear DC approach , 2014, Comput. Optim. Appl..

[54]  Martin Branda,et al.  KRÁTKÉ POJEDNÁNÍ O PROBLÉMU ROZVRHOVÁNÍ S PŘEDEPSANÝMI ČASY PRACÍ A NÁHODNÝMI PRVKY A NOTE ON FIXED INTERVAL SCHEDULING WITH STOCHASTIC ELEMENTS , 2016 .

[55]  Carsten Thomassen,et al.  Graphs on Surfaces , 2001, Johns Hopkins series in the mathematical sciences.

[56]  René Henrion,et al.  A Gradient Formula for Linear Chance Constraints Under Gaussian Distribution , 2012, Math. Oper. Res..

[57]  Helu Xiao,et al.  Estimation of portfolio efficiency via DEA , 2015 .

[58]  Patrizia Beraldi,et al.  An exact approach for solving integer problems under probabilistic constraints with random technology matrix , 2010, Ann. Oper. Res..

[59]  Tony Huynh,et al.  Explicit bounds for graph minors , 2018, J. Comb. Theory, Ser. B.

[60]  Katta G. Murty,et al.  Nonlinear Programming Theory and Algorithms , 2007, Technometrics.

[61]  James V. Burke,et al.  Calmness and exact penalization , 1991 .

[62]  L. Neuwirth,et al.  An algorithm for the construction of 3-manifolds from 2-complexes , 1968, Mathematical Proceedings of the Cambridge Philosophical Society.

[63]  René Henrion A Critical Note on Empirical (Sample Average, Monte Carlo) Approximation of Solutions to Chance Constrained Programs , 2011, System Modelling and Optimization.

[64]  Emmanuel Thanassoulis,et al.  Negative data in DEA: a directional distance approach applied to bank branches , 2004, J. Oper. Res. Soc..

[65]  D. Morton,et al.  Mean-Variance-Skewness-Kurtosis efficiency of portfolios computed via moment-based bounds , 2017, 2017 International Conference on Information Science and Communications Technologies (ICISCT).

[66]  Bernd Sturmfels,et al.  How to shell a monoid , 1998 .

[67]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[68]  Martin Branda A chance constrained investment problem with portfolio variance and skewness criteria-solution technique based on the Successive Iterative Regularization , 2016 .

[69]  Huifu Xu Uniform exponential convergence of sample average random functions under general sampling with applications in stochastic programming , 2010 .

[70]  C. Erten,et al.  Journal of Graph Algorithms and Applications Embedding Vertices at Points: Few Bends Suffice for Planar Graphs , 2022 .

[71]  Wolfgang Kühnel,et al.  Manifolds in the Skeletons of Convex Polytopes, Tightness, and Generalized Heawood Inequalities , 1994 .

[72]  Yonina C. Eldar,et al.  Sparsity Constrained Nonlinear Optimization: Optimality Conditions and Algorithms , 2012, SIAM J. Optim..

[73]  Daniel Bienstock,et al.  Computational Study of a Family of Mixed-Integer Quadratic Programming Problems , 1995, IPCO.

[74]  Werner Römisch,et al.  Are Quasi-Monte Carlo algorithms efficient for two-stage stochastic programs? , 2013, Comput. Optim. Appl..

[75]  Leo Kroon,et al.  Exact and approximation algorithms for the operational fixed interval scheduling problem , 1995 .

[76]  Marek Krcál,et al.  Algorithmic Solvability of the Lifting-Extension Problem , 2013, Discrete & Computational Geometry.

[77]  M. Schaefer The Graph Crossing Number and its Variants: A Survey , 2013 .

[78]  Robert E. Tarjan,et al.  Efficient Planarity Testing , 1974, JACM.

[79]  Jirí Matousek,et al.  Polynomial-Time Computation of Homotopy Groups and Postnikov Systems in Fixed Dimension , 2012, SIAM J. Comput..

[80]  Paul Na,et al.  Portfolio performance evaluation in a mean-variance-skewness framework , 2006, Eur. J. Oper. Res..

[81]  Martin Branda,et al.  Flow-based formulations for operational fixed interval scheduling problems with random delays , 2017, Comput. Manag. Sci..

[82]  Martin Branda,et al.  On relations between chance constrained and penalty function problems under discrete distributions , 2013, Math. Methods Oper. Res..

[83]  Martin Branda,et al.  Sample approximation technique for mixed-integer stochastic programming problems with several chance constraints , 2012, Oper. Res. Lett..

[84]  J. Herzog,et al.  Diagonal subalgebras of bigraded algebras and embeddings of blow-ups of projective spaces , 1997 .

[85]  Michelle L. Wachs,et al.  Bruhat Order of Coxeter Groups and Shellability , 1982 .

[86]  Tito Homem-de-Mello,et al.  On Rates of Convergence for Stochastic Optimization Problems Under Non--Independent and Identically Distributed Sampling , 2008, SIAM J. Optim..

[87]  Abdel Lisser,et al.  A second-order cone programming approach for linear programs with joint probabilistic constraints , 2012, Oper. Res. Lett..

[88]  Martin Branda,et al.  Mean-value at risk portfolio efficiency: approaches based on data envelopment analysis models with negative data and their empirical behaviour , 2016, 4OR.

[89]  W. Briec,et al.  Single-Period Markowitz Portfolio Selection, Performance Gauging, and Duality: A Variation on the Luenberger Shortage Function , 2002 .

[90]  Alexander Shapiro,et al.  Convex Approximations of Chance Constrained Programs , 2006, SIAM J. Optim..

[91]  Yuri M. Ermoliev,et al.  Stochastic Optimization of Insurance Portfolios for Managing Exposure to Catastrophic Risks , 2000, Ann. Oper. Res..

[92]  Yong Wang,et al.  Asymptotic Analysis of Sample Average Approximation for Stochastic Optimization Problems with Joint Chance Constraints via Conditional Value at Risk and Difference of Convex Functions , 2014, J. Optim. Theory Appl..

[93]  Jirí Matousek,et al.  Polynomial-Time Homology for Simplicial Eilenberg–MacLane Spaces , 2012, Found. Comput. Math..

[94]  Ming Zhao,et al.  A polyhedral study on chance constrained program with random right-hand side , 2017, Math. Program..

[95]  U. Stadtmüller,et al.  Estimating Archimedean Copulas in High Dimensions , 2012 .

[96]  Marc Lackenby,et al.  The efficient certification of knottedness and Thurston norm , 2016, Advances in Mathematics.

[97]  Chun-Hung Chen,et al.  Convergence Properties of Two-Stage Stochastic Programming , 2000 .

[98]  Martin Branda Reformulations of input-output oriented DEA tests with diversification , 2013, Oper. Res. Lett..

[99]  A. Shapiro Monte Carlo Sampling Methods , 2003 .

[100]  Kristiaan Kerstens,et al.  Mean-Variance-Skewness Portfolio Performance Gauging: A General Shortage Function and Dual Approach , 2007, Manag. Sci..

[101]  Martin Branda,et al.  Diversification-consistent data envelopment analysis based on directional-distance measures , 2015 .

[102]  Maria Gabriela Martinez,et al.  Augmented Lagrangian method for probabilistic optimization , 2012, Ann. Oper. Res..

[103]  René Henrion,et al.  On the quantification of nomination feasibility in stationary gas networks with random load , 2016, Math. Methods Oper. Res..

[104]  Martin Branda Sample approximation technique for mixed-integer stochastic programming problems with expected value constraints , 2014, Optim. Lett..

[105]  W. T. Tutte Toward a theory of crossing numbers , 1970 .

[106]  Martin Branda,et al.  Sparse optimization for inverse problems in atmospheric modelling , 2016, Environ. Model. Softw..

[107]  Christian Kanzow,et al.  Constraint qualifications and optimality conditions for optimization problems with cardinality constraints , 2016, Math. Program..

[108]  Wei Wang,et al.  Sample average approximation of expected value constrained stochastic programs , 2008, Oper. Res. Lett..

[109]  Tito Homem-de-Mello,et al.  Monte Carlo sampling-based methods for stochastic optimization , 2014 .

[110]  Rémy Malgouyres,et al.  Determining Whether a Simplicial 3-Complex Collapses to a 1-Complex Is NP-Complete , 2008, DGCI.

[111]  Jitka Dupacová,et al.  Approximation and contamination bounds for probabilistic programs , 2012, Ann. Oper. Res..

[112]  J. Świa̧tkowski,et al.  Hyperbolic Coxeter groups of large dimension , 2003 .

[113]  Entwicklung Der Schulen,et al.  HAMBURG , 2006, Camden Fifth Series.

[114]  Sebastián Lozano,et al.  Data envelopment analysis of mutual funds based on second-order stochastic dominance , 2008, Eur. J. Oper. Res..

[115]  A. Charnes,et al.  Cost Horizons and Certainty Equivalents: An Approach to Stochastic Programming of Heating Oil , 1958 .

[116]  Jeffrey C. Lagarias,et al.  The computational complexity of knot and link problems , 1999, JACM.

[117]  Shabbir Ahmed,et al.  Convex relaxations of chance constrained optimization problems , 2014, Optim. Lett..

[118]  Martin Branda,et al.  Nonlinear Chance Constrained Problems: Optimality Conditions, Regularization and Solvers , 2016, Journal of Optimization Theory and Applications.

[119]  R. Forman Morse Theory for Cell Complexes , 1998 .

[120]  George L. Nemhauser,et al.  An integer programming approach for linear programs with probabilistic constraints , 2007, Math. Program..

[121]  Michal Adamaszek,et al.  Extremal problems related to Betti numbers of flag complexes , 2011, Discret. Appl. Math..

[122]  Ronald Hochreiter,et al.  A difference of convex formulation of value-at-risk constrained optimization , 2010 .

[123]  Thierry Post,et al.  On the dual test for SSD efficiency: With an application to momentum investment strategies , 2008, Eur. J. Oper. Res..

[124]  Vlasta Kanková,et al.  On the convergence rate of empirical estimates in chance constrained stochastic programming , 1990, Kybernetika.

[125]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[126]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[127]  René Henrion,et al.  Solving joint chance constrained problems using regularization and Benders’ decomposition , 2018, Annals of Operations Research.

[128]  Milos Kopa,et al.  On relations between DEA-risk models and stochastic dominance efficiency tests , 2014, Central Eur. J. Oper. Res..

[129]  David P. Morton,et al.  Prioritized interdiction of nuclear smuggling via tabu search , 2015, Optim. Lett..

[130]  Bernardo K. Pagnoncelli,et al.  Chance-constrained problems and rare events: an importance sampling approach , 2016, Math. Program..

[131]  R. Ho Algebraic Topology , 2022 .

[132]  Miguel A. Lejeune,et al.  An Exact Solution Approach for Portfolio Optimization Problems Under Stochastic and Integer Constraints , 2009, Oper. Res..

[133]  Marcus Schaefer,et al.  Toward a Theory of Planarity: Hanani-Tutte and Planarity Variants , 2012, J. Graph Algorithms Appl..

[134]  H. Levy Stochastic Dominance: Investment Decision Making under Uncertainty , 2010 .

[135]  H. Bateman Book Review: Ergebnisse der Mathematik und ihrer Grenzgebiete , 1933 .

[136]  Shabbir Ahmed,et al.  On quantile cuts and their closure for chance constrained optimization problems , 2018, Math. Program..