Turbine: Facebook’s Service Management Platform for Stream Processing
暂无分享,去创建一个
Vanish Talwar | Gabriela Jacques-Silva | Serhat Yilmaz | Michael Y. Levin | Nikhil Simha | Weitao Chen | Yuan Mei | Luwei Cheng | Anirban Banerjee | Brian Smith | Tim Williamson | Guoqiang Jerry Chen | V. Talwar | Yuan Mei | Gabriela Jacques-Silva | Serhat Yilmaz | N. Simha | Luwei Cheng | Anirban Banerjee | Brian Smith | Tim Williamson | Weitao Chen
[1] Seif Haridi,et al. State Management in Apache Flink®: Consistent Stateful Distributed Stream Processing , 2017, Proc. VLDB Endow..
[2] Craig Chambers,et al. The Dataflow Model: A Practical Approach to Balancing Correctness, Latency, and Cost in Massive-Scale, Unbounded, Out-of-Order Data Processing , 2015, Proc. VLDB Endow..
[3] Carlo Curino,et al. Apache Hadoop YARN: yet another resource negotiator , 2013, SoCC.
[4] Wei Lin,et al. StreamScope: Continuous Reliable Distributed Processing of Big Data Streams , 2016, NSDI.
[5] Jignesh M. Patel,et al. Storm@twitter , 2014, SIGMOD Conference.
[6] Indranil Gupta,et al. Stateful Scalable Stream Processing at LinkedIn , 2017, Proc. VLDB Endow..
[7] Jon Howell,et al. Slicer: Auto-Sharding for Datacenter Applications , 2016, OSDI.
[8] Andrew V. Goldberg,et al. Quincy: fair scheduling for distributed computing clusters , 2009, SOSP '09.
[9] J. T. Robinson,et al. On optimistic methods for concurrency control , 1979, TODS.
[10] Scott Shenker,et al. Delay scheduling: a simple technique for achieving locality and fairness in cluster scheduling , 2010, EuroSys '10.
[11] Abhishek Verma,et al. Large-scale cluster management at Google with Borg , 2015, EuroSys.
[12] Vasiliki Kalavri,et al. Three steps is all you need: fast, accurate, automatic scaling decisions for distributed streaming dataflows , 2018, OSDI.
[13] Scott Shenker,et al. Discretized streams: fault-tolerant streaming computation at scale , 2013, SOSP.
[14] Sriram Rao,et al. Dhalion: Self-Regulating Stream Processing in Heron , 2017, Proc. VLDB Endow..
[15] Tianyin Xu,et al. Maelstrom: Mitigating Datacenter-level Disasters by Draining Interdependent Traffic Safely and Efficiently , 2018, OSDI.
[16] M. Slee,et al. Thrift : Scalable Cross-Language Services Implementation , 2022 .
[17] Jignesh M. Patel,et al. Twitter Heron: Stream Processing at Scale , 2015, SIGMOD Conference.
[18] Zheng Shao,et al. Data warehousing and analytics infrastructure at facebook , 2010, SIGMOD Conference.
[19] Benjamin Hindman,et al. Dominant Resource Fairness: Fair Allocation of Multiple Resource Types , 2011, NSDI.
[20] Ali Ghodsi,et al. Drizzle: Fast and Adaptable Stream Processing at Scale , 2017, SOSP.
[21] Kun-Lung Wu,et al. IBM Streams Processing Language: Analyzing Big Data in motion , 2013, IBM J. Res. Dev..
[22] John Allen,et al. Scuba: Diving into Data at Facebook , 2013, Proc. VLDB Endow..
[23] Wei Lin,et al. Apollo: Scalable and Coordinated Scheduling for Cloud-Scale Computing , 2014, OSDI.
[24] Michael Abd-El-Malek,et al. Omega: flexible, scalable schedulers for large compute clusters , 2013, EuroSys '13.
[25] Eric A. Brewer,et al. Borg, Omega, and Kubernetes , 2016, ACM Queue.
[26] Anshul Jaiswal,et al. Providing Streaming Joins as a Service at Facebook , 2018, Proc. VLDB Endow..
[27] Jay Kreps,et al. Kafka : a Distributed Messaging System for Log Processing , 2011 .
[28] Anshul Jaiswal,et al. Realtime Data Processing at Facebook , 2016, SIGMOD Conference.
[29] Randy H. Katz,et al. Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center , 2011, NSDI.
[30] Daniel Mills,et al. MillWheel: Fault-Tolerant Stream Processing at Internet Scale , 2013, Proc. VLDB Endow..