Multi-level quantum noise spectroscopy

System noise identification is crucial to the engineering of robust quantum systems. Although existing quantum noise spectroscopy (QNS) protocols measure an aggregate amount of noise affecting a quantum system, they generally cannot distinguish between the underlying processes that contribute to it. Here, we propose and experimentally validate a spin-locking-based QNS protocol that exploits the multi-level energy structure of a superconducting qubit to achieve two notable advances. First, our protocol extends the spectral range of weakly anharmonic qubit spectrometers beyond the present limitations set by their lack of strong anharmonicity. Second, the additional information gained from probing the higher-excited levels enables us to identify and distinguish contributions from different underlying noise mechanisms.

[1]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[2]  R. J. Schoelkopf,et al.  Qubits as Spectrometers of Quantum Noise , 2003 .

[3]  L. Vandersypen,et al.  NMR techniques for quantum control and computation , 2004, quant-ph/0404064.

[4]  P. Joyez,et al.  Decoherence in a superconducting quantum bit circuit , 2005 .

[5]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[6]  Jens Koch,et al.  Coupling superconducting qubits via a cavity bus , 2007, Nature.

[7]  Jens Koch,et al.  Fluxonium: Single Cooper-Pair Circuit Free of Charge Offsets , 2009, Science.

[8]  Jens Koch,et al.  Nonlinear response of the vacuum Rabi resonance , 2008, 0807.2882.

[9]  S. Filipp,et al.  Measurement of Autler-Townes and Mollow transitions in a strongly driven superconducting qubit. , 2008, Physical review letters.

[10]  M. Lukin,et al.  Imaging mesoscopic nuclear spin noise with a diamond magnetometer. , 2010, Journal of Chemical Physics.

[11]  S. Girvin,et al.  Introduction to quantum noise, measurement, and amplification , 2008, 0810.4729.

[12]  Seung Min Kim,et al.  Fluxonium : Single Cooper-Pair Circuit Free of Charge Offsets , 2010 .

[13]  Dieter Suter,et al.  Measuring the spectrum of colored noise by dynamical decoupling. , 2011, Physical review letters.

[14]  Y. Hirayama,et al.  Measurement of the noise spectrum using a multiple-pulse sequence. , 2011, Physical review letters.

[15]  D. Suter,et al.  Dynamical decoupling noise spectroscopy , 2011, 1106.3463.

[16]  D. Cory,et al.  Noise spectroscopy through dynamical decoupling with a superconducting flux qubit , 2011 .

[17]  J. M. Gambetta,et al.  Analytic control methods for high-fidelity unitary operations in a weakly nonlinear oscillator , 2010, 1011.1949.

[18]  Qubits as spectrometers of dephasing noise , 2011, 1102.5115.

[19]  A. Yacoby,et al.  Charge noise spectroscopy using coherent exchange oscillations in a singlet-triplet qubit. , 2012, Physical review letters.

[20]  W. Oliver,et al.  Materials in superconducting quantum bits , 2013 .

[21]  R. Barends,et al.  Coherent Josephson qubit suitable for scalable quantum integrated circuits. , 2013, Physical review letters.

[22]  H. Terai,et al.  Observation of the three-state dressed states in circuit quantum electrodynamics. , 2013, Physical review letters.

[23]  J. D. Carter,et al.  Coherent manipulation of cold Rydberg atoms near the surface of an atom chip , 2013, 1308.1945.

[24]  Yasunobu Nakamura,et al.  Rotating-frame relaxation as a noise spectrum analyser of a superconducting qubit undergoing driven evolution , 2013, Nature Communications.

[25]  Daniel Sank,et al.  Fast accurate state measurement with superconducting qubits. , 2014, Physical review letters.

[26]  Lorenza Viola,et al.  General transfer-function approach to noise filtering in open-loop quantum control. , 2014, Physical review letters.

[27]  J. P. Dehollain,et al.  Storing quantum information for 30 seconds in a nanoelectronic device. , 2014, Nature nanotechnology.

[28]  G. Falci,et al.  1 / f noise: Implications for solid-state quantum information , 2013, 1304.7925.

[29]  Yasunobu Nakamura,et al.  Flux qubit noise spectroscopy using Rabi oscillations under strong driving conditions , 2014, 1402.1247.

[30]  C. Marcus,et al.  Semiconductor-Nanowire-Based Superconducting Qubit. , 2015, Physical review letters.

[31]  M. Weides,et al.  Multiphoton dressing of an anharmonic superconducting many-level quantum circuit , 2014, 1410.3383.

[32]  P. Leek,et al.  Coherence and decay of higher energy levels of a superconducting transmon qubit. , 2014, Physical review letters.

[33]  I. Siddiqi,et al.  A near–quantum-limited Josephson traveling-wave parametric amplifier , 2015, Science.

[34]  John M. Martinis,et al.  Quantum theory of a bandpass Purcell filter for qubit readout , 2015, 1504.06030.

[35]  M. Markham,et al.  Spectroscopy of surface-induced noise using shallow spins in diamond. , 2014, Physical review letters.

[36]  Leigh M. Norris,et al.  Qubit Noise Spectroscopy for Non-Gaussian Dephasing Environments. , 2015, Physical review letters.

[37]  J. Clarke,et al.  The flux qubit revisited to enhance coherence and reproducibility , 2015, Nature Communications.

[38]  F. Reinhard,et al.  Quantum sensing , 2016, 1611.02427.

[39]  S. Tarucha,et al.  A>99.9%-fidelity quantum-dot spin qubit with coherence limited by charge noise , 2017, 1708.01454.

[40]  K. Itoh,et al.  A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9% , 2018, Nature Nanotechnology.

[41]  H. Neven,et al.  Observation of Classical-Quantum Crossover of 1/f Flux Noise and Its Paramagnetic Temperature Dependence. , 2016, Physical review letters.

[42]  D. Lucarelli,et al.  Application of optimal band-limited control protocols to quantum noise sensing , 2017, Nature Communications.

[43]  Kenji Watanabe,et al.  Coherent control of a hybrid superconducting circuit made with graphene-based van der Waals heterostructures , 2018, Nature Nanotechnology.

[44]  Fei Yan,et al.  Distinguishing Coherent and Thermal Photon Noise in a Circuit Quantum Electrodynamical System. , 2018, Physical review letters.

[45]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[46]  A. Morello,et al.  Assessment of a Silicon Quantum Dot Spin Qubit Environment via Noise Spectroscopy , 2018, Physical Review Applied.

[47]  Lorenza Viola,et al.  Simultaneous Spectral Estimation of Dephasing and Amplitude Noise on a Qubit Sensor via Optimally Band-Limited Control , 2019 .

[48]  John C. Platt,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[49]  L. Ioffe,et al.  Anomalous charge noise in superconducting qubits , 2019, Physical Review B.

[50]  Fei Yan,et al.  A quantum engineer's guide to superconducting qubits , 2019, Applied Physics Reviews.

[51]  Leigh M. Norris,et al.  Two-Qubit Spectroscopy of Spatiotemporally Correlated Quantum Noise in Superconducting Qubits , 2019, 1912.04982.

[52]  Lorenza Viola,et al.  Non-Gaussian noise spectroscopy with a superconducting qubit sensor , 2019, Nature Communications.

[53]  V. Manucharyan,et al.  High-Coherence Fluxonium Qubit , 2018, Physical Review X.

[54]  A. Melville,et al.  Characterizing and Optimizing Qubit Coherence Based on SQUID Geometry , 2020, 2002.09372.

[55]  A. Houck,et al.  New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds , 2020, Nature Communications.